References
1.
Abriel, H., Loffing, J., Rebhun, J.F., Pratt,
J.H., Schild, L., Horisberger, J.-D., Rotin, D., and Staub, O. (1999).
Defective regulation of the epithelial Na+ channel by
Nedd4 in Liddle’s syndrome. J Clin Invest
103, 667–673. 10.1172/JCI5713.
2.
Ackerman, M.J., and Clapham, D.E. (1997). Ion
Channels — Basic Science and Clinical
Disease. N Engl J Med 336, 1575–1586. 10.1056/NEJM199705293362207.
3.
Adebamiro, A., Cheng, Y., Rao, U.S., Danahay,
H., and Bridges, R.J. (2007). A Segment of γ ENaC
Mediates Elastase Activation of Na+
Transport. Journal of General Physiology 130,
611–629. 10.1085/jgp.200709781.
4.
Aguilar-Camacho, J.M., Foreman, K.,
Jaimes-Becerra, A., Aharoni, R., Gründer, S., and Moran, Y. (2023).
Functional analysis in a model sea anemone reveals phylogenetic
complexity and a role in cnidocyte discharge of
DEG/ENaC ion channels. Communications Biology
6, 17. 10.1038/s42003-022-04399-1.
5.
Aiyer, S., Zhang, C., Baldwin, P.R., and
Lyumkis, D. (2021). Evaluating Local and Directional
Resolution of Cryo-EMCryo-electron
microscopy (Cryo-EM) Density Maps. In cryoEM: Methods and
Protocols, T. Gonen and B. L. Nannenga, eds.
(Springer US), pp. 161–187. 10.1007/978-1-0716-0966-8_8.
6.
Alli, A.A., Bao, H.-F., Alli, A.A., Aldrugh,
Y., Song, J.Z., Ma, H.-P., Yu, L., Al-Khalili, O., and Eaton, D.C.
(2012). Phosphatidylinositol phosphate-dependent regulation of
Xenopus ENaC by MARCKS protein. American
Journal of Physiology-Renal Physiology 303, F800–F811. 10.1152/ajprenal.00703.2011.
7.
Alli, A.A., Bao, H.-F., Liu, B.-C., Yu, L.,
Aldrugh, S., Montgomery, D.S., Ma, H.-P., and Eaton, D.C. (2015).
Calmodulin and CaMKII modulate ENaC activity
by regulating the association of MARCKS and the
cytoskeleton with the apical membrane. American Journal of
Physiology-Renal Physiology 309, F456–F463. 10.1152/ajprenal.00631.2014.
8.
Althaus, M., Bogdan, R., Clauss, W.G., and
Fronius, M. (2007). Mechano-sensitivity of epithelial sodium channels
(ENaCs): Laminar shear stress increases ion channel open
probability. The FASEB Journal 21, 2389–2399. 10.1096/fj.06-7694com.
9.
Amasheh, S., Barmeyer, C., Koch, C.S.,
Tavalali, S., Mankertz, J., Epple, H.-J., Gehring, M.M., Florian, P.,
Kroesen, A.-J., Zeitz, M., et al. (2004). Cytokine-dependent
transcriptional down-regulation of epithelial sodium channel in
ulcerative colitis. Gastroenterology 126, 1711–1720. 10.1053/j.gastro.2004.03.010.
10.
Araki, N., Umemura, M., Miyagi, Y., Yabana, M.,
Miki, Y., Tamura, K., Uchino, K., Aoki, R., Goshima, Y., Umemura, S., et
al. (2008). Expression, Transcription, and Possible
Antagonistic Interaction of the Human Nedd4L Gene
Variant. Hypertension 51, 773–777. 10.1161/HYPERTENSIONAHA.107.102061.
11.
Archer, C.R., Enslow, B.T., Carver, C.M., and
Stockand, J.D. (2020). Phosphatidylinositol 4,5-bisphosphate directly
interacts with the β and γ subunits of the sodium channel
ENaC. Journal of Biological Chemistry 295,
7958–7969. 10.1074/jbc.RA120.012606.
12.
Asher, C., Wald, H., Rossier, B.C., and Garty,
H. (1996). Aldosterone-induced increase in the abundance of
Na+ channel subunits. American Journal of Physiology-Cell
Physiology 271, C605–C611. 10.1152/ajpcell.1996.271.2.C605.
13.
Askwith, C.C., Benson, C.J., Welsh, M.J., and
Snyder, P.M. (2001). DEG/ENaC ion channels
involved in sensory transduction are modulated by cold temperature.
Proceedings of the National Academy of Sciences 98, 6459–6463.
10.1073/pnas.111155398.
14.
Baconguis, I., and Gouaux, E. (2012).
Structural plasticity and dynamic selectivity of acid-sensing ion
channel–spider toxin complexes. Nature 489, 400–405. 10.1038/nature11375.
15.
Baconguis, I., Bohlen, C.J., Goehring, A.,
Julius, D., and Gouaux, E. (2014). X-Ray Structure of
Acid-Sensing Ion Channel 1–Snake Toxin Complex
Reveals Open State of a Na+-Selective
Channel. Cell 156, 717–729. 10.1016/j.cell.2014.01.011.
16.
Balchak, D.M., Thompson, R.N., and Kashlan,
O.B. (2018). The epithelial Na+ channel γ subunit
autoinhibitory tract suppresses channel activity by binding the γ
subunit’s finger–thumb domain interface. Journal of Biological Chemistry
293, 16217–16225. 10.1074/jbc.RA118.004362.
17.
Bao, H.-F., Thai, T.L., Yue, Q., Ma, H.-P.,
Eaton, A.F., Cai, H., Klein, J.D., Sands, J.M., and Eaton, D.C. (2014).
ENaC activity is increased in isolated, split-open cortical
collecting ducts from protein kinase Cα knockout mice.
American Journal of Physiology-Renal Physiology 306, F309–F320.
10.1152/ajprenal.00519.2013.
18.
Bertog, M., Cuffe, J.E., Pradervand, S.,
Hummler, E., Hartner, A., Porst, M., Hilgers, K.F., Rossier, B.C., and
Korbmacher, C. (2008). Aldosterone responsiveness of the epithelial
sodium channel (ENaC) in colon is increased in a mouse
model for Liddle’s syndrome. The Journal of Physiology
586, 459–475. 10.1113/jphysiol.2007.140459.
19.
Bize, V., and Horisberger, J.-D. (2007). Sodium
self-inhibition of human epithelial sodium channel: Selectivity and
affinity of the extracellular sodium sensing site. American Journal of
Physiology-Renal Physiology 293, F1137–F1146. 10.1152/ajprenal.00100.2007.
20.
Bohnert, B.N., Menacher, M., Janessa, A., Wörn,
M., Schork, A., Daiminger, S., Kalbacher, H., Häring, H.-U., Daniel, C.,
Amann, K., et al. (2018). Aprotinin prevents proteolytic epithelial
sodium channel (ENaC) activation and volume retention in
nephrotic syndrome. Kidney International 93, 159–172. 10.1016/j.kint.2017.07.023.
21.
Bruce, M.C., Kanelis, V., Fouladkou, F.,
Debonneville, A., Staub, O., and Rotin, D. (2008). Regulation of
Nedd4-2 self-ubiquitination and stability by a
PY motif located within its HECT-domain. Biochem. J. 415, 155. 10.1042/BJ20071708.
22.
Bruns, J.B., Carattino, M.D., Sheng, S.,
Maarouf, A.B., Weisz, O.A., Pilewski, J.M., Hughey, R.P., and Kleyman,
T.R. (2007). Epithelial Na+ Channels Are Fully
Activated by Furin- and Prostasin-dependent Release of an Inhibitory
Peptide from the γ-Subunit. J. Biol. Chem.
282, 6153–6160. 10.1074/jbc.M610636200.
23.
Buetow, L., and Huang, D.T. (2016). Structural
insights into the catalysis and regulation of E3 ubiquitin
ligases. Nature Reviews Molecular Cell Biology 17, 626–642. 10.1038/nrm.2016.91.
24.
Butterworth, M.B., Edinger, R.S., Ovaa, H.,
Burg, D., Johnson, J.P., and Frizzell, R.A. (2007). The
Deubiquitinating Enzyme UCH-L3 Regulates the Apical
Membrane Recycling of the Epithelial Sodium Channel
*. Journal of Biological Chemistry 282, 37885–37893. 10.1074/jbc.M707989200.
25.
Butterworth, M.B., Edinger, R.S., Frizzell,
R.A., and Johnson, J.P. (2009). Regulation of the epithelial sodium
channel by membrane trafficking. American Journal of Physiology-Renal
Physiology 296, F10–F24. 10.1152/ajprenal.90248.2008.
27.
Caldwell, R.A., Boucher, R.C., and Stutts, M.J.
(2004). Serine protease activation of near-silent epithelial
Na+ channels. American Journal of Physiology-Cell
Physiology 286, C190–C194. 10.1152/ajpcell.00342.2003.
28.
Caldwell, R.A., Boucher, R.C., and Stutts, M.J.
(2005). Neutrophil elastase activates near-silent epithelial
Na+ channels and increases airway epithelial
Na+ transport. American Journal of Physiology-Lung Cellular
and Molecular Physiology 288, L813–L819. 10.1152/ajplung.00435.2004.
29.
Canessa, C.M., Schild, L., Buell, G., Thorens,
B., Gautschi, I., Horisberger, J.-D., and Rossier, B.C. (1994).
Amiloride-sensitive epithelial Na+ channel is made of three
homologous subunits. Nature 367, 463–467. 10.1038/367463a0.
30.
Carattino, M.D., Sheng, S., and Kleyman, T.R.
(2004). Epithelial Na+ Channels Are Activated
by Laminar Shear Stress *. Journal of Biological Chemistry
279, 4120–4126. 10.1074/jbc.M311783200.
31.
Carattino, M.D., Passero, C.J., Steren, C.A.,
Maarouf, A.B., Pilewski, J.M., Myerburg, M.M., Hughey, R.P., and
Kleyman, T.R. (2008). Defining an inhibitory domain in the α-subunit of
the epithelial sodium channel. American Journal of Physiology-Renal
Physiology 294, F47–F52. 10.1152/ajprenal.00399.2007.
32.
Carattino, M.D., and Della Vecchia, M.C.
(2012). Contribution of Residues in Second
Transmembrane Domain of ASIC1a Protein to Ion
Selectivity *. Journal of Biological Chemistry 287,
12927–12934. 10.1074/jbc.M111.329284.
33.
Chalfant, M.L., Denton, J.S., Berdiev, B.K.,
Ismailov, I.I., Benos, D.J., and Stanton, B.A. (1999). Intracellular
H+ regulates the α-subunit of ENaC, the
epithelial Na+ channel. American Journal of Physiology-Cell
Physiology 276, C477–C486. 10.1152/ajpcell.1999.276.2.C477.
34.
Chandrashekar, J., Hoon, M.A., Ryba, N.J.P.,
and Zuker, C.S. (2006). The receptors and cells for mammalian taste.
Nature 444, 288–294. 10.1038/nature05401.
35.
Chandrashekar, J., Kuhn, C., Oka, Y.,
Yarmolinsky, D.A., Hummler, E., Ryba, N.J.P., and Zuker, C.S. (2010).
The cells and peripheral representation of sodium taste in mice. Nature
464, 297–301. 10.1038/nature08783.
36.
Chang, S.S., Grunder, S., Hanukoglu, A.,
Rösler, A., Mathew, P.M., Hanukoglu, I., Schild, L., Lu, Y., Shimkets,
R.A., Nelson-Williams, C., et al. (1996). Mutations in subunits of the
epithelial sodium channel cause salt wasting with hyperkalaemic
acidosis, pseudohypoaldosteronism type 1. Nature Genetics 12,
248–253. 10.1038/ng0396-248.
37.
CHEEK, D.B., and PERRY, J.W. (1958). A salt
wasting syndrome in infancy. Arch Dis Child 33, 252–256. 10.1136/adc.33.169.252.
38.
Chen, Z., Jiang, H., Xu, W., Li, X., Dempsey,
D.R., Zhang, X., Devreotes, P., Wolberger, C., Amzel, L.M., Gabelli,
S.B., et al. (2017/05/04/). A Tunable Brake for HECT
Ubiquitin Ligases. Mol. Cell 66, 345–357.e6. 10.1016/j.molcel.2017.03.020.
39.
Chen, S., Bhargava, A., Mastroberardino, L.,
Meijer, O.C., Wang, J., Buse, P., Firestone, G.L., Verrey, F., and
Pearce, D. (1999). Epithelial sodium channel regulated by
aldosterone-induced protein sgk. Proceedings of the National Academy of
Sciences 96, 2514–2519. 10.1073/pnas.96.5.2514.
40.
Chen, J., Kleyman, T.R., and Sheng, S. (2013).
Gain-of-function variant of the human epithelial sodium channel.
American Journal of Physiology-Renal Physiology 304, F207–F213.
10.1152/ajprenal.00563.2012.
41.
Chraïbi, A., and Horisberger, J.-D. (2002). Na
Self Inhibition of Human Epithelial Na
Channel. The Journal of General Physiology 120, 133. 10.1085/jgp.20028612.
42.
Collawn, J.F., Lazrak, A., Bebok, Z., and
Matalon, S. (2012). The CFTR and ENaC debate:
How important is ENaC in CF lung disease? Am J
Physiol Lung Cell Mol Physiol 302, L1141–1146. 10.1152/ajplung.00036.2012.
43.
Collier, D.M., and Snyder, P.M. (2009).
Extracellular Protons Regulate Human ENaC by
Modulating Na+ Self-inhibition
*. Journal of Biological Chemistry 284, 792–798. 10.1074/jbc.M806954200.
44.
Croll, T. (2018). ISOLDE: A
physically realistic environment for model building into low-resolution
electron-density maps. Acta Crystallographica Section D 74,
519–530.
45.
Dagenais, A., Denis, C., Vives, M.-F.,
Girouard, S., Massé, C., Nguyen, T., Yamagata, T., Grygorczyk, C.,
Kothary, R., and Berthiaume, Y. (2001). Modulation of
α-ENaC and
Α1-Na+-K+-ATPase by cAMP and dexamethasone in alveolar epithelial
cells. American Journal of Physiology-Lung Cellular and Molecular
Physiology 281, L217–L230. 10.1152/ajplung.2001.281.1.L217.
46.
Dandamudi, M., Hausen, H., and Lynagh, T.
(2022). Comparative analysis defines a broader FMRFamide-gated sodium channel family and
determinants of neuropeptide sensitivity. Journal of Biological
Chemistry 298. 10.1016/j.jbc.2022.102086.
47.
Danilova, V., Hellekant, G., Tinti, J.-M., and
Nofre, C. (1998). Gustatory Responses of the Hamster
Mesocricetus auratus to Various Compounds Considered
Sweet by Humans. Journal of Neurophysiology
80, 2102–2112. 10.1152/jn.1998.80.4.2102.
48.
Debonneville, C., Flores, S.Y., Kamynina, E.,
Plant, P.J., Tauxe, C., Thomas, M.A., Münster, C., Chraïbi, A., Pratt,
J.H., Horisberger, J.-D., et al. (2001). Phosphorylation of
Nedd4-2 by Sgk1 regulates epithelial
Na+ channel cell surface expression. The EMBO Journal
20, 7052–7059. 10.1093/emboj/20.24.7052.
49.
de
la Rosa, D.A., Zhang, P., Náray-Fejes-Tóth, A., Fejes-Tóth, G., and
Canessa, C.M. (1999). The Serum and Glucocorticoid
Kinase sgk Increases the Abundance of
Epithelial Sodium Channels in the Plasma
Membrane of Xenopus Oocytes *. Journal of Biological
Chemistry 274, 37834–37839. 10.1074/jbc.274.53.37834.
50.
Desor, J.A., and Finn, J. (1989). Effects of
amiloride on salt taste in humans. Chemical Senses 14, 793–803.
10.1093/chemse/14.6.793.
51.
Diakov, A., and Korbmacher, C. (2004). A
Novel Pathway of Epithelial Sodium Channel Activation
Involves a Serum- and Glucocorticoid-inducible Kinase Consensus Motif in
the C Terminus of the Channel’s
α-Subunit *. Journal of Biological Chemistry 279,
38134–38142. 10.1074/jbc.M403260200.
52.
Diakov, A., Bera, K., Mokrushina, M., Krueger,
B., and Korbmacher, C. (2008). Cleavage in the γ-subunit of the
epithelial sodium channel (ENaC) plays an important role in
the proteolytic activation of near-silent channels. J Physiol
586, 4587–4608. 10.1113/jphysiol.2008.154435.
53.
Dijkink, L., Hartog, A., Deen, P.M.T., van Os,
C.H., and Bindels, R.J.M. (1999). Time-dependent regulation by
aldosterone of the amiloride-sensitive Na+ channel in
rabbit kidney. Pflügers Archiv 438, 354–360. 10.1007/s004240050920.
54.
Drummond, H.A., Price, M.P., Welsh, M.J., and
Abboud, F.M. (1998). A Molecular Component of the
Arterial Baroreceptor Mechanotransducer. Neuron
21, 1435–1441. 10.1016/S0896-6273(00)80661-3.
55.
Drummond, H.A., Gebremedhin, D., and Harder,
D.R. (2004). Degenerin/Epithelial Na+ Channel
Proteins Components of a Vascular Mechanosensor.
Hypertension 44, 643–648. 10.1161/01.HYP.0000144465.56360.ad.
56.
Eaton, D.C., and Marunaka, Y. (1990). Chapter 3
Ion Channel Fluctuations: “Noise”
and Single-Channel Measurements. In Current
Topics in Membranes and
Transport, F. Bronner, ed. (Academic Press),
pp. 61–114. 10.1016/S0070-2161(08)60229-4.
57.
Edelheit, O., Hanukoglu, I., Gizewska, M.,
Kandemir, N., Tenenbaum-Rakover, Y., Yurdakök, M., Zajaczek, S., and
Hanukoglu, A. (2005). Novel mutations in epithelial sodium channel
(ENaC) subunit genes and phenotypic expression of
multisystem pseudohypoaldosteronism. Clinical Endocrinology 62,
547–553. 10.1111/j.1365-2265.2005.02255.x.
58.
Emsley, P., Lohkamp, B., Scott, W.G., and
Cowtan, K. (2010). Features and
development of Coot. Acta Crystallographica Section D
66, 486–501.
59.
Epple, H.J., Amasheh, S., Mankertz, J., Goltz,
M., Schulzke, J.D., and Fromm, M. (2000). Early aldosterone effect in
distal colon by transcriptional regulation of ENaC
subunits. American Journal of Physiology-Gastrointestinal and Liver
Physiology 278, G718–G724. 10.1152/ajpgi.2000.278.5.G718.
60.
Escoubet, B., Coureau, C., Bonvalet, J.P., and
Farman, N. (1997). Noncoordinate regulation of epithelial
Na channel and Na pump subunit mRNAs in kidney and colon by aldosterone. American
Journal of Physiology-Cell Physiology 272, C1482–C1491. 10.1152/ajpcell.1997.272.5.C1482.
61.
Fakitsas, P., Adam, G., Daidie[Combining Acute
Accent], D.A.A., van Bemmelen, M.X., Fouladkou, F., Patrignani, A.,
Wagner, U., Warth, R., Camargo, S.M.R., Staub, O., et al. (2007). Early
Aldosterone-Induced Gene Product Regulates the
Epithelial Sodium Channel by
Deubiquitylation. Journal of the American Society of
Nephrology 18.
62.
Fejes-Tóth, G., Frindt, G., Náray-Fejes-Tóth,
A., and Palmer, L.G. (2008). Epithelial Na+ channel
activation and processing in mice lacking SGK1. American
Journal of Physiology-Renal Physiology 294, F1298–F1305. 10.1152/ajprenal.00579.2007.
63.
Firsov, D., Schild, L., Gautschi, I., Mérillat,
A.-M., Schneeberger, E., and Rossier, B.C. (1996). Cell surface
expression of the epithelial Na channel and a mutant
causing Liddle syndrome: A
quantitative approach. Proceedings of the National Academy of Sciences
93, 15370–15375. 10.1073/pnas.93.26.15370.
64.
Fotia, A.B., Dinudom, A., Shearwin, K.E., Koch,
J.-P., Korbmacher, C., Cook, D.I., and Kumar, S. (2003). The role of
individual Nedd4–2 (KIAA0439) WW
domains in binding and regulating epithelial sodium channels. The FASEB
Journal 17, 70–72. 10.1096/fj.02-0497fje.
65.
Frindt, G., and Palmer, L.G. (2009). Surface
expression of sodium channels and transporters in rat kidney: Effects of
dietary sodium. Am. J. Physiol. Renal Physiol. 297,
F1249–F1255. 10.1152/ajprenal.00401.2009.
66.
Frindt, G., and Palmer, L.G. (2015). Acute
effects of aldosterone on the epithelial Na channel in rat
kidney. American Journal of Physiology-Renal Physiology 308,
F572–F578. 10.1152/ajprenal.00585.2014.
67.
Frindt, G., Yang, L., Bamberg, K., and Palmer,
L.G. (2018). Na restriction activates epithelial Na
channels in rat kidney through two mechanisms and decreases distal
Na+ delivery. The Journal of Physiology 596,
3585–3602. 10.1113/JP275988.
68.
Fronius, M., Bogdan, R., Althaus, M., Morty,
R.E., and Clauss, W.G. (2010). Epithelial Na+ channels
derived from human lung are activated by shear force. Respiratory
Physiology & Neurobiology 170, 113–119. 10.1016/j.resp.2009.11.004.
69.
Fuchs, W., Larsen, E.H., and Lindemann, B.
(1977). Current—voltage curve of sodium channels and concentration
dependence of sodium permeability in frog skin. The Journal of
Physiology 267, 137–166. 10.1113/jphysiol.1977.sp011805.
70.
Fyfe, G.K., and Canessa, C.M. (1998). Subunit
Composition Determines the Single Channel
Kinetics of the Epithelial Sodium Channel. Journal
of General Physiology 112, 423–432. 10.1085/jgp.112.4.423.
71.
Gannon, K.S., and Contreras, R.J. (1995).
Sodium intake linked to amiloride-sensitive gustatory transduction in
C57BL/6J and 129/7 mice. Physiology &
Behavior 57, 231–239. 10.1016/0031-9384(94)00279-E.
72.
García-Caballero, A., Dang, Y., He, H., and
Stutts, M.J. (2008). ENaC Proteolytic Regulation by Channel-activating Protease 2. Journal of General
Physiology 132, 521–535. 10.1085/jgp.200810030.
73.
Garcia-Caballero, A., Ishmael, S.S., Dang, Y.,
Gillie, D., Bond, J.S., Milgram, S.L., and Stutts, M.J. (2011).
Activation of the epithelial sodium channel by the metalloprotease
meprin β subunit. Channels 5, 14–22. 10.4161/chan.5.1.13759.
74.
Garty, H., and Palmer, L.G. (1997). Epithelial
sodium channels: Function, structure, and regulation. Physiol. Rev.
77, 359–396. 10.1152/physrev.1997.77.2.359.
75.
Geller, D.S., Rodriguez-Soriano, J., Boado,
A.V., Schifter, S., Bayer, M., Chang, S.S., and Lifton, R.P. (1998).
Mutations in the mineralocorticoid receptor gene cause autosomal
dominant pseudohypoaldosteronism type I. Nature Genetics
19, 279–281. 10.1038/966.
76.
Goulet, C.C., Volk, K.A., Adams, C.M., Prince,
L.S., Stokes, J.B., and Snyder, P.M. (1998). Inhibition of the
Epithelial Na+ Channel by
Interaction of Nedd4 with a PY Motif
Deleted in Liddle’s Syndrome *. Journal
of Biological Chemistry 273, 30012–30017. 10.1074/jbc.273.45.30012.
77.
GRUBB, B.R., and BOUCHER, R.C. (1999).
Pathophysiology of Gene-Targeted Mouse Models for
Cystic Fibrosis. Physiological Reviews 79,
S193–S214. 10.1152/physrev.1999.79.1.S193.
78.
Grubb, B.R., O’Neal, W.K., Ostrowski, L.E.,
Kreda, S.M., Button, B., and Boucher, R.C. (2012). Transgenic hCFTR expression fails to correct
β-ENaC mouse lung disease. American Journal of
Physiology-Lung Cellular and Molecular Physiology 302,
L238–L247. 10.1152/ajplung.00083.2011.
79.
Gründer, S., Firsov, D., Chang, S.S., Jaeger,
N.F., Gautschi, I., Schild, L., Lifton, R.P., and Rossier, B.C. (1997).
A mutation causing pseudohypoaldosteronism type 1 identifies a conserved
glycine that is involved in the gating of the epithelial sodium channel.
The EMBO Journal 16, 899–907. 10.1093/emboj/16.5.899.
80.
Gründer, S., Fowler Jaeger, N., Gautschi, I.,
Schild, L., and Rossier, B.C. (1999). Identification of a highly
conserved sequence at the N-terminus of the
epithelial Na+ channel α subunit involved in gating.
Pflügers Archiv 438, 709–715. 10.1007/s004249900119.
81.
Gu,
G., Caldwell, G.A., and Chalfie, M. (1996). Genetic interactions
affecting touch sensitivity in Caenorhabditis elegans.
Proceedings of the National Academy of Sciences 93, 6577–6582.
10.1073/pnas.93.13.6577.
82.
Guyton, A.C. (1991). Blood Pressure
Control—Special Role of the Kidneys and
Body Fluids. Science 252, 1813–1816. 10.1126/science.2063193.
83.
Haerteis, S., Krappitz, M., Bertog, M.,
Krappitz, A., Baraznenok, V., Henderson, I., Lindström, E., Murphy,
J.E., Bunnett, N.W., and Korbmacher, C. (2012). Proteolytic activation
of the epithelial sodium channel (ENaC) by the cysteine
protease cathepsin-S. Pflügers Archiv - European Journal of
Physiology 464, 353–365. 10.1007/s00424-012-1138-3.
84.
Hanukoglu, I., and Hanukoglu, A. (2016/04/01/).
Epithelial sodium channel (ENaC) family:
Phylogeny, structure–function, tissue distribution, and
associated inherited diseases. Gene 579, 95–132. 10.1016/j.gene.2015.12.061.
85.
Harder, D., and Fotiadis, D. (2012). Measuring
substrate binding and affinity of purified membrane transport proteins
using the scintillation proximity assay. Nature Protocols 7,
1569–1578. 10.1038/nprot.2012.090.
86.
Harris, M., Garcia-Caballero, A., Stutts, M.J.,
Firsov, D., and Rossier, B.C. (2008). Preferential Assembly
of Epithelial Sodium Channel (ENaC)
Subunits in Xenopus Oocytes: ROLE OF
FURIN-MEDIATED ENDOGENOUS PROTEOLYSIS *. Journal of Biological
Chemistry 283, 7455–7463. 10.1074/jbc.M707399200.
87.
Hesselager, M., Timmermann, D.B., and Ahring,
P.K. (2004). pH Dependency and
Desensitization Kinetics of Heterologously Expressed
Combinations of Acid-sensing Ion Channel
Subunits*. Journal of Biological Chemistry 279,
11006–11015. 10.1074/jbc.M313507200.
88.
Hill, W.G., An, B., and Johnson, J.P. (2002).
Endogenously Expressed Epithelial Sodium Channel Is Present
in Lipid Rafts in A6 Cells. J. Biol. Chem.
277, 33541–33544. 10.1074/jbc.C200309200.
89.
Hill, W.G., Butterworth, M.B., Wang, H.,
Edinger, R.S., Lebowitz, J., Peters, K.W., Frizzell, R.A., and Johnson,
J.P. (2007). The Epithelial Sodium Channel
(ENaC) Traffics to Apical
Membrane in Lipid Rafts in Mouse Cortical
Collecting Duct Cells. J. Biol. Chem. 282, 37402–37411.
10.1074/jbc.M704084200.
90.
Hille, B. (2001). Ion Channels of
Excitable Membranes 3rd ed. (Sinauer
Associates).
91.
Hughey, R.P., Mueller, G.M., Bruns, J.B.,
Kinlough, C.L., Poland, P.A., Harkleroad, K.L., Carattino, M.D., and
Kleyman, T.R. (2003). Maturation of the Epithelial Na+
Channel Involves Proteolytic Processing of the α- and
γ-Subunits. J. Biol. Chem. 278, 37073–37082. 10.1074/jbc.M307003200.
92.
Hughey, R.P., Bruns, J.B., Kinlough, C.L., and
Kleyman, T.R. (2004). Distinct Pools of Epithelial
Sodium Channels Are Expressed at the Plasma
Membrane. J. Biol. Chem. 279, 48491–48494. 10.1074/jbc.C400460200.
93.
Hughey, R.P., Bruns, J.B., Kinlough, C.L.,
Harkleroad, K.L., Tong, Q., Carattino, M.D., Johnson, J.P., Stockand,
J.D., and Kleyman, T.R. (2004). Epithelial Sodium Channels Are
Activated by Furin-dependent
Proteolysis *. Journal of Biological Chemistry 279,
18111–18114. 10.1074/jbc.C400080200.
94.
Ichimura, T., Yamamura, H., Sasamoto, K.,
Tominaga, Y., Taoka, M., Kakiuchi, K., Shinkawa, T., Takahashi, N.,
Shimada, S., and Isobe, T. (2005). 14-3-3 Proteins Modulate
the Expression of Epithelial Na+
Channels by Phosphorylation-dependent
Interaction with Nedd4-2 Ubiquitin Ligase *. Journal
of Biological Chemistry 280, 13187–13194. 10.1074/jbc.M412884200.
95.
Ingólfsson, H.I., Melo, M.N., van Eerden, F.J.,
Arnarez, C., Lopez, C.A., Wassenaar, T.A., Periole, X., de Vries, A.H.,
Tieleman, D.P., and Marrink, S.J. (2014). Lipid
Organization of the Plasma Membrane. J. Am.
Chem. Soc. 136, 14554–14559. 10.1021/ja507832e.
96.
Itani, O.A., Campbell, J.R., Herrero, J.,
Snyder, P.M., and Thomas, C.P. (2003). Alternate promoters and variable
splicing lead to hNedd4–2 isoforms with a
C2 domain and varying number of WW domains.
American Journal of Physiology-Renal Physiology 285, F916–F929.
10.1152/ajprenal.00203.2003.
97.
Itani, O.A., Stokes, J.B., and Thomas, C.P.
(2005). Nedd4–2 isoforms differentially associate with ENaC
and regulate its activity. American Journal of Physiology-Renal
Physiology 289, F334–F346. 10.1152/ajprenal.00394.2004.
98.
Jasti, J., Furukawa, H., Gonzales, E.B., and
Gouaux, E. (2007). Structure of acid-sensing ion channel 1 at 1.9
Å resolution and low pH. Nature
449, 316–323. 10.1038/nature06163.
99.
Ji,
H.-L., Chalfant, M.L., Jovov, B., Lockhart, J.P., Parker, S.B., Fuller,
C.M., Stanton, B.A., and Benos, D.J. (2000). The Cytosolic
Termini of the β- and γ-ENaC Subunits Are Involved
in the Functional Interactions between Cystic
Fibrosis Transmembrane Conductance Regulator and Epithelial
Sodium Channel *. Journal of Biological Chemistry 275,
27947–27956. 10.1074/jbc.M002848200.
100.
Ji, H.-L., Zhao, R., Komissarov, A.A., Chang,
Y., Liu, Y., and Matthay, M.A. (2015). Proteolytic
Regulation of Epithelial Sodium Channels by
Urokinase Plasminogen Activator. Journal of Biological
Chemistry 290, 5241–5255. 10.1074/jbc.M114.623496.
101.
Joshi, R., Pohl, P., Strachotova, D., Herman,
P., Obsil, T., and Obsilova, V. (2022). Nedd4-2 binding to 14-3-3
modulates the accessibility of its catalytic site and WW
domains. Biophysical Journal 121, 1299–1311. 10.1016/j.bpj.2022.02.025.
102.
Jumper, J., Evans, R., Pritzel, A., Green, T.,
Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek,
A., Potapenko, A., et al. (2021). Highly accurate protein structure
prediction with AlphaFold. Nature 596, 583–589. 10.1038/s41586-021-03819-2.
103.
Kadurin, I., Golubovic, A., Leisle, L.,
Schindelin, H., and Gründer, S. (2008). Differential effects of N-glycans on surface expression suggest structural
differences between the acid-sensing ion channel (ASIC) 1a
and ASIC1b. Biochemical Journal 412, 469–475. 10.1042/BJ20071614.
104.
Kamynina, E., Debonneville, C., Bens, M.,
Vandewalle, A., and Staub, O. (2001). A novel mouse Nedd4
protein suppresses the activity of the epithelial Na+
channel. The FASEB Journal 15, 204–214. 10.1096/fj.00-0191com.
105.
Kamynina, E., Tauxe, C., and Staub, O. (2001).
Distinct characteristics of two human Nedd4 proteins with
respect to epithelial Na+ channel regulation. American
Journal of Physiology-Renal Physiology 281, F469–F477. 10.1152/ajprenal.2001.281.3.F469.
106.
Kanelis, V., Farrow, N.A., Kay, L.E., Rotin,
D., and Forman-Kay, J.D. (1998). NMR studies of tandem
WW domains of Nedd4 in complex with a
PY motif-containing region of the epithelial sodium
channel. Biochem. Cell Biol. 76, 341–350. 10.1139/o98-042.
107.
Karpushev, A.V., Ilatovskaya, D.V., and
Staruschenko, A. (2010). The actin cytoskeleton and small G
protein RhoA are not involved in flow-dependent activation
of ENaC. BMC Research Notes 3, 210. 10.1186/1756-0500-3-210.
108.
Kashlan, O.B., and Kleyman, T.R. (2011).
ENaC structure and function in the wake of a resolved
structure of a family member. American Journal of Physiology-Renal
Physiology 301, F684–F696. 10.1152/ajprenal.00259.2011.
109.
Kashlan, O.B., Boyd, C.R., Argyropoulos, C.,
Okumura, S., Hughey, R.P., Grabe, M., and Kleyman, T.R. (2010).
Allosteric inhibition of the epithelial Na+ channel through
peptide binding at peripheral finger and thumb domains. J Biol Chem
285, 35216–35223. 10.1074/jbc.M110.167064.
110.
Kashlan, O.B., Adelman, J.L., Okumura, S.,
Blobner, B.M., Zuzek, Z., Hughey, R.P., Kleyman, T.R., and Grabe, M.
(2011). Constraint-based, Homology Model of the
Extracellular Domain of the Epithelial Na+
Channel α Subunit Reveals a
Mechanism of Channel Activation by
Proteases. J. Biol. Chem. 286, 649–660. 10.1074/jbc.M110.167098.
111.
Kashlan, O.B., Blobner, B.M., Zuzek, Z.,
Carattino, M.D., and Kleyman, T.R. (2012). Inhibitory Tract
Traps the Epithelial Na+ Channel in a
Low Activity Conformation *. Journal of Biological
Chemistry 287, 20720–20726. 10.1074/jbc.M112.358218.
112.
Kashlan, O.B., Blobner, B.M., Zuzek, Z.,
Tolino, M., and Kleyman, T.R. (2015). Na+ Inhibits the
Epithelial Na+ Channel by Binding
to a Site in an Extracellular Acidic Cleft *.
Journal of Biological Chemistry 290, 568–576. 10.1074/jbc.M114.606152.
113.
Kashlan, O.B., Kinlough, C.L., Myerburg, M.M.,
Shi, S., Chen, J., Blobner, B.M., Buck, T.M., Brodsky, J.L., Hughey,
R.P., and Kleyman, T.R. (2018). N-linked glycans are required on
epithelial Na(+) channel subunits for maturation and
surface expression. Am. J. Physiol. Renal Physiol. 314,
F483–f492. 10.1152/ajprenal.00195.2017.
114.
Kasimova, M.A., Lynagh, T., Sheikh, Z.P.,
Granata, D., Borg, C.B., Carnevale, V., and Pless, S.A. (2020).
Evolutionarily Conserved Interactions within the Pore
Domain of Acid-Sensing Ion Channels. Biophysical
Journal 118, 861–872. 10.1016/j.bpj.2019.09.001.
115.
Kawate, T., and Gouaux, E. (2006/04/01/).
Fluorescence-Detection Size-Exclusion Chromatography for
Precrystallization Screening of Integral Membrane
Proteins. Structure 14, 673–681. 10.1016/j.str.2006.01.013.
116.
Kellenberger, S., Gautschi, I., and Schild, L.
(1999). A single point mutation in the pore region of the epithelial
Na+ channel changes ion selectivity by modifying molecular
sieving. Proceedings of the National Academy of Sciences 96,
4170–4175. 10.1073/pnas.96.7.4170.
117.
Kellenberger, S., Hoffmann-Pochon, N.,
Gautschi, I., Schneeberger, E., and Schild, L. (1999). On the
Molecular Basis of Ion Permeation in the
Epithelial Na+ Channel. Journal of General
Physiology 114, 13–30. 10.1085/jgp.114.1.13.
118.
Kellenberger, S., Auberson, M., Gautschi, I.,
Schneeberger, E., and Schild, L. (2001). Permeability
Properties of Enac Selectivity Filter Mutants.
Journal of General Physiology 118, 679–692. 10.1085/jgp.118.6.679.
119.
Kellenberger, S., Gautschi, I., Rossier, B.C.,
and Schild, L. (06/15/ 1998). Mutations causing Liddle
syndrome reduce sodium-dependent downregulation of the epithelial sodium
channel in the Xenopus oocyte expression system. The
Journal of Clinical Investigation 101, 2741–2750. 10.1172/JCI2837.
120.
Kemendy, A.E., Kleyman, T.R., and Eaton, D.C.
(1992). Aldosterone alters the open probability of amiloride-blockable
sodium channels in A6 epithelia. American Journal of
Physiology-Cell Physiology 263, C825–C837. 10.1152/ajpcell.1992.263.4.C825.
121.
Kerem, E., Bistritzer, T., Hanukoglu, A.,
Hofmann, T., Zhou, Z., Bennett, W., MacLaughlin, E., Barker, P., Nash,
M., Quittell, L., et al. (1999). Pulmonary Epithelial
Sodium-Channel Dysfunction and Excess Airway Liquid
in Pseudohypoaldosteronism. N Engl J Med 341,
156–162. 10.1056/NEJM199907153410304.
122.
Kim, C.S., Ahmad, S., Wu, T., Walton, W.G.,
Redinbo, M.R., and Tarran, R. (2018). SPLUNC1 is an
allosteric modulator of the epithelial sodium channel. The FASEB Journal
32, 2478–2491. 10.1096/fj.201701126R.
123.
Kim, H.C., and Huibregtse, J.M. (2009).
Polyubiquitination by HECT E3s and the
Determinants of Chain Type Specificity.
Molecular and Cellular Biology 29, 3307–3318. 10.1128/MCB.00240-09.
124.
Kleyman, T.R., and Cragoe, E.J. (1988).
Amiloride and its analogs as tools in the study of ion transport. The
Journal of Membrane Biology 105, 1–21. 10.1007/BF01871102.
125.
Kleyman, T.R., and Eaton, D.C. (2020).
Regulating ENaC’s gate. American Journal of Physiology-Cell
Physiology 318, C150–C162. 10.1152/ajpcell.00418.2019.
126.
Knoepp, F., Ashley, Z., Barth, D., Baldin,
J.-P., Jennings, M., Kazantseva, M., Saw, E.L., Katare, R., Alvarez de
la Rosa, D., Weissmann, N., et al. (2020). Shear force sensing of
epithelial Na+ channel (ENaC) relies on N-glycosylated asparagines in the palm and knuckle
domains of αENaC. Proceedings of the
National Academy of Sciences 117, 717–726. 10.1073/pnas.1911243117.
127.
Knowles, M.R., Stutts, M.J., Spock, A.,
Fischer, N., Gatzy, J.T., and Boucher, R.C. (1983). Abnormal Ion
Permeation Through Cystic Fibrosis Respiratory Epithelium.
Science 221, 1067–1070. 10.1126/science.6308769.
128.
Komander, D., and Rape, M. (2012). The
Ubiquitin Code. Annu. Rev. Biochem. 81, 203–229.
10.1146/annurev-biochem-060310-170328.
129.
Kougias, P., Weakley, S.M., Yao, Q., Lin, P.H.,
and Chen, C. (2010). Arterial
baroreceptors in the management of systemic hypertension. Med Sci
Monit 16, RA1–8.
130.
Kretz, O., Barbry, P., Bock, R., and Lindemann,
B. (1999). Differential Expression of RNA and
Protein of the Three Pore-forming
Subunits of the Amiloride-sensitive
Epithelial Sodium Channel in Taste Buds of the
Rat. J Histochem Cytochem. 47, 51–64. 10.1177/002215549904700106.
131.
Kunzelmann, K., Bachhuber, T., Regeer, R.,
Markovich, D., Sun, J., and Schreiber, R. (2005). Purinergic inhibition
of the epithelial Na+ transport via hydrolysis of
PIP2. The FASEB Journal 19, 142–143. 10.1096/fj.04-2314fje.
132.
Li, J., Sheng, S., Perry, C.J., and Kleyman,
T.R. (2003). Asymmetric Organization of the Pore
Region of the Epithelial Sodium Channel *. Journal
of Biological Chemistry 278, 13867–13874. 10.1074/jbc.M300149200.
133.
Liang, X., Butterworth, M.B., Peters, K.W.,
Walker, W.H., and Frizzell, R.A. (2008). An Obligatory
Heterodimer of 14-3-3β and 14-3-3ϵ Is Required for
Aldosterone Regulation of the Epithelial Sodium
Channel *. Journal of Biological Chemistry 283,
27418–27425. 10.1074/jbc.M803687200.
134.
Liddle, G.W., Bledsoe, T., and Coppage, W.S.
(1963). A familial renal disorder simulating primary aldosteronism but
with negligible aldosterone secretion. Trans. Assoc. Am. Physicians
76, 199–213.
135.
Liebschner, D., Afonine, P.V., Baker, M.L.,
Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.-W., Jain,
S., McCoy, A.J., et al. (2019). Macromolecular
structure determination using X-rays,
neutrons and electrons: Recent developments in Phenix.
Acta Crystallographica Section D 75, 861–877.
136.
Lingueglia, E., Champigny, G., Lazdunski, M.,
and Barbry, P. (1995). Cloning of the amiloride-sensitive
FMRFamide peptide-gated sodium channel. Nature
378, 730–733. 10.1038/378730a0.
137.
Liu, K., Qin, F., Sun, X., Zhang, Y., Wang, J.,
Wu, Y., Ma, W., Wang, W., Wu, X., Qin, Y., et al. (2018). Analysis
of the genes involved in Mendelian forms of low-renin
hypertension in Chinese early-onset hypertensive
patients. Journal of Hypertension 36.
138.
Loffing, J., Pietri, L., Aregger, F.,
Bloch-Faure, M., Ziegler, U., Meneton, P., Rossier, B.C., and Kaissling,
B. (2000). Differential subcellular localization of ENaC
subunits in mouse kidney in response to high- and low-Na
diets. American Journal of Physiology-Renal Physiology 279,
F252–F258. 10.1152/ajprenal.2000.279.2.F252.
139.
Loffing, J., Zecevic, M., Féraille, E.,
Kaissling, B., Asher, C., Rossier, B.C., Firestone, G.L., Pearce, D.,
and Verrey, F. (2001). Aldosterone induces rapid apical translocation of
ENaC in early portion of renal collecting system: Possible
role of SGK. American Journal of Physiology-Renal
Physiology 280, F675–F682. 10.1152/ajprenal.2001.280.4.F675.
140.
Lossow, K., Hermans-Borgmeyer, I., Meyerhof,
W., and Behrens, M. (2020). Segregated Expression of
ENaC Subunits in Taste Cells. Chemical Senses
45, 235–248. 10.1093/chemse/bjaa004.
141.
Lu, C., Pribanic, S., Debonneville, A., Jiang,
C., and Rotin, D. (2007). The PY Motif of
ENaC, Mutated in Liddle Syndrome,
Regulates Channel Internalization, Sorting and
Mobilization from Subapical Pool. Traffic
8, 1246–1264. 10.1111/j.1600-0854.2007.00602.x.
142.
Ma, H.-P., Saxena, S., and Warnock, D.G.
(2002). Anionic Phospholipids Regulate Native and
Expressed Epithelial Sodium Channel (ENaC) *.
Journal of Biological Chemistry 277, 7641–7644. 10.1074/jbc.C100737200.
143.
Maarouf, A.B., Sheng, N., Chen, J., Winarski,
K.L., Okumura, S., Carattino, M.D., Boyd, C.R., Kleyman, T.R., and
Sheng, S. (2009). Novel Determinants of Epithelial
Sodium Channel Gating within Extracellular Thumb
Domains *. Journal of Biological Chemistry 284,
7756–7765. 10.1074/jbc.M807060200.
144.
Mähler, J., and Persson, I. (2012). A
Study of the Hydration of the Alkali
Metal Ions in Aqueous Solution. Inorg. Chem.
51, 425–438. 10.1021/ic2018693.
145.
Malik, B., Schlanger, L., Al-Khalili, O., Bao,
H.-F., Yue, G., Price, S.R., Mitch, W.E., and Eaton, D.C. (2001).
ENaC Degradation in A6 Cells by the
Ubiquitin-Proteosome Proteolytic Pathway *. Journal of
Biological Chemistry 276, 12903–12910. 10.1074/jbc.M010626200.
146.
Mall, M., Grubb, B.R., Harkema, J.R., O’Neal,
W.K., and Boucher, R.C. (2004). Increased airway epithelial
Na+ absorption produces cystic fibrosis-like lung disease
in mice. Nature Medicine 10, 487–493. 10.1038/nm1028.
147.
Mall, M.A., Button, B., Johannesson, B., Zhou,
Z., Livraghi, A., Caldwell, R.A., Schubert, S.C., Schultz, C., O’Neal,
W.K., Pradervand, S., et al. (2010). Airway Surface Liquid Volume
Regulation Determines Different Airway Phenotypes in Liddle
Compared with βENaC-overexpressing
Mice *. Journal of Biological Chemistry 285,
26945–26955. 10.1074/jbc.M110.151803.
148.
Markadieu, N., Blero, D., Boom, A., Erneux, C.,
and Beauwens, R. (2004). Phosphatidylinositol 3,4,5-trisphosphate: An
early mediator of insulin-stimulated sodium transport in A6
cells. American Journal of Physiology-Renal Physiology 287,
F319–F328. 10.1152/ajprenal.00314.2003.
149.
Masilamani, S., Kim, G.-H., Mitchell, C., Wade,
J.B., and Knepper, M.A. (1999). Aldosterone-mediated regulation of
ENaC α, β, and γ subunit proteins in rat kidney. J Clin
Invest 104, R19–R23. 10.1172/JCI7840.
150.
Maspero, E., Mari, S., Valentini, E.,
Musacchio, A., Fish, A., Pasqualato, S., and Polo, S. (03/11
07/23/received 01/04/revised 01/13/accepted 2011). Structure of the
HECT:ubiquitin complex and its role in ubiquitin chain
elongation. EMBO Reports 12, 342–349. 10.1038/embor.2011.21.
151.
Mastronarde, D.N. (2003).
SerialEM: A Program for Automated Tilt
Series Acquisition on Tecnai Microscopes Using
Prediction of Specimen Position. Microscopy and
Microanalysis 9, 1182–1183. 10.1017/S1431927603445911.
152.
May, A., Puoti, A., Gaeggeler, H.P.,
Horisberger, J.D., and Rossier, B.C. (1997). Early
effect of aldosterone on the rate of synthesis of the epithelial sodium
channel alpha subunit in A6 renal cells. Journal of the
American Society of Nephrology 8.
153.
Mick, V.E., Itani, O.A., Loftus, R.W., Husted,
R.F., Schmidt, T.J., and Thomas, C.P. (2001). The α-Subunit
of the Epithelial Sodium Channel Is an
Aldosterone-Induced Transcript in Mammalian
Collecting Ducts, and This Transcriptional Response Is
Mediated via Distinct cis-Elements in
the 5’-Flanking Region of the Gene. Molecular
Endocrinology 15, 575–588. 10.1210/mend.15.4.0620.
154.
Minegishi, S., Ishigami, T., Kino, T., Chen,
L., Nakashima-Sasaki, R., Araki, N., Yatsu, K., Fujita, M., and Umemura,
S. (2016). An isoform of Nedd4-2 is critically involved in
the renal adaptation to high salt intake in mice. Sci. Rep. 6,
27137. 10.1038/srep27137.
155.
Montgomery, D.S., Yu, L., Ghazi, Z.M., Thai,
T.L., Al-Khalili, O., Ma, H.-P., Eaton, D.C., and Alli, A.A. (2017).
ENaC activity is regulated by calpain-2 proteolysis of
MARCKS proteins. American Journal of Physiology-Cell
Physiology 313, C42–C53. 10.1152/ajpcell.00244.2016.
156.
Mueller, G.M., Maarouf, A.B., Kinlough, C.L.,
Sheng, N., Kashlan, O.B., Okumura, S., Luthy, S., Kleyman, T.R., and
Hughey, R.P. (2010). Cys Palmitoylation of the Beta
Subunit Modulates Gating of the Epithelial Sodium
Channel. J. Biol. Chem. 285, 30453–30462. 10.1074/jbc.M110.151845.
157.
Mueller, G.M., Yan, W., Copelovitch, L.,
Jarman, S., Wang, Z., Kinlough, C.L., Tolino, M.A., Hughey, R.P.,
Kleyman, T.R., and Rubenstein, R.C. (2012). Multiple residues in the
distal C terminus of the α-subunit have roles in modulating
human epithelial sodium channel activity. American Journal of
Physiology-Renal Physiology 303, F220–F228. 10.1152/ajprenal.00493.2011.
158.
Mukherjee, A., Mueller, G.M., Kinlough, C.L.,
Sheng, N., Wang, Z., Mustafa, S.A., Kashlan, O.B., Kleyman, T.R., and
Hughey, R.P. (2014/05/16/). Cysteine Palmitoylation of the
γ Subunit Has a Dominant Role in
Modulating Activity of the Epithelial Sodium
Channel*. J. Biol. Chem. 289, 14351–14359. 10.1074/jbc.M113.526020.
159.
Muslin, A.J., Tanner, J.W., Allen, P.M., and
Shaw, A.S. (1996). Interaction of 14-3-3 with Signaling Proteins
Is Mediated by the Recognition of
Phosphoserine. Cell 84, 889–897. 10.1016/S0092-8674(00)81067-3.
160.
Náray-Fejes-Tóth, A., Canessa, C., Cleaveland,
E.S., Aldrich, G., and Fejes-Tóth, G. (1999). Sgk Is an
Aldosterone-induced Kinase in the
Renal Collecting Duct: EFFECTS ON EPITHELIAL
Na+ CHANNELS *. Journal of Biological Chemistry
274, 16973–16978. 10.1074/jbc.274.24.16973.
161.
Naray-Fejes-Toth, A., and Fejes-Toth, G.
(2000). The sgk, an aldosterone-induced gene in mineralocorticoid target
cells, regulates the epithelial sodium channel. Kidney International
57, 1290–1294. 10.1046/j.1523-1755.2000.00964.x.
162.
Noreng, S., Bharadwaj, A., Posert, R.,
Yoshioka, C., and Baconguis, I. (2018). Structure of the human
epithelial sodium channel by cryo-electron microscopy. eLife 7,
e39340. 10.7554/eLife.39340.
163.
Noreng, S., Posert, R., Bharadwaj, A., Houser,
A., and Baconguis, I. (2020). Molecular principles of assembly,
activation, and inhibition in epithelial sodium channel. eLife
9, e59038. 10.7554/eLife.59038.
164.
Orce, G.G., Castillo, G.A., and Margolius, H.S.
(1980). Inhibition of short-circuit current in toad urinary bladder by
inhibitors of glandular kallikrein. American Journal of Physiology-Renal
Physiology 239, F459–F465. 10.1152/ajprenal.1980.239.5.F459.
165.
Palmer, L.G. (1984). Voltage-dependent block by
amiloride and other monovalent cations of apical Na
channels in the toad urinary bladder. The Journal of Membrane Biology
80, 153–165. 10.1007/BF01868771.
166.
Palmer, L.G. (1985). Interactions of amiloride
and other blocking cations with the apical Na channel in
the toad urinary bladder. The Journal of Membrane Biology 87,
191–199. 10.1007/BF01871218.
167.
Palmer, L.G., and Frindt, G. (1986).
Amiloride-sensitive Na channels from the apical membrane of
the rat cortical collecting tubule. Proceedings of the National Academy
of Sciences 83, 2767–2770. 10.1073/pnas.83.8.2767.
168.
Palmer, L.G., and Frindt, G. (1987). Effects of
cell Ca and pH on
Na channels from rat cortical collecting tubule. American
Journal of Physiology-Renal Physiology 253, F333–F339. 10.1152/ajprenal.1987.253.2.F333.
169.
Palmer, L.G., and Frindt, G. (1996). Gating of
Na channels in the rat cortical collecting tubule: Effects
of voltage and membrane stretch. Journal of General Physiology
107, 35–45. 10.1085/jgp.107.1.35.
170.
Palmer, L.G. (1982). Ion selectivity of the
apical membrane Na channel in the toad urinary bladder. The
Journal of Membrane Biology 67, 91–98. 10.1007/BF01868651.
171.
Passero, C.J., Mueller, G.M., Rondon-Berrios,
H., Tofovic, S.P., Hughey, R.P., and Kleyman, T.R. (2008). Plasmin
Activates Epithelial Na+ Channels by
Cleaving the γ Subunit *. Journal of
Biological Chemistry 283, 36586–36591. 10.1074/jbc.M805676200.
172.
Passero, C.J., Carattino, M.D., Kashlan, O.B.,
Myerburg, M.M., Hughey, R.P., and Kleyman, T.R. (2010). Defining an
inhibitory domain in the gamma subunit of the epithelial sodium channel.
American Journal of Physiology-Renal Physiology 299, F854–F861.
10.1152/ajprenal.00316.2010.
173.
Passero, C.J., Mueller, G.M., Myerburg, M.M.,
Carattino, M.D., Hughey, R.P., and Kleyman, T.R. (2012). TMPRSS4-dependent activation of the epithelial
sodium channel requires cleavage of the γ-subunit distal to the furin
cleavage site. American Journal of Physiology-Renal Physiology
302, F1–F8. 10.1152/ajprenal.00330.2011.
174.
Patel, A.B., Chao, J., and Palmer, L.G. (2012).
Tissue kallikrein activation of the epithelial Na channel.
American Journal of Physiology-Renal Physiology 303, F540–F550.
10.1152/ajprenal.00133.2012.
175.
Păunescu, T.G., Blazer-Yost, B.L., Vlahos,
C.J., and Helman, S.I. (2000). LY-294002-inhibitable PI 3-kinase and regulation
of baseline rates of Na+ transport in A6
epithelia. American Journal of Physiology-Cell Physiology 279,
C236–C247. 10.1152/ajpcell.2000.279.1.C236.
176.
Pettersen, E.F., Goddard, T.D., Huang, C.C.,
Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and Ferrin, T.E.
(2021). UCSF ChimeraX: Structure visualization
for researchers, educators, and developers. Protein Sci 30,
70–82. 10.1002/pro.3943.
177.
Pintilie, G., Zhang, K., Su, Z., Li, S.,
Schmid, M.F., and Chiu, W. (2020). Measurement of atom resolvability in
cryo-EM maps with Q-scores.
Nature Methods 17, 328–334. 10.1038/s41592-020-0731-1.
178.
Plant, P.J., Lafont, F., Lecat, S., Verkade,
P., Simons, K., and Rotin, D. (2000). Apical Membrane
Targeting of Nedd4 Is Mediated by an
Association of Its C2 Domain with
Annexin Xiiib. The Journal of Cell Biology 149,
1473. 10.1083/jcb.149.7.1473.
179.
Plant, P.J., Yeger, H., Staub, O., Howard, P.,
and Rotin, D. (1997). The C2 Domain of the Ubiquitin
Protein Ligase Nedd4 Mediates Ca2+-dependent Plasma
Membrane Localization. J. Biol. Chem. 272, 32329–32336.
10.1074/jbc.272.51.32329.
180.
Pochynyuk, O., Staruschenko, A., Tong, Q.,
Medina, J., and Stockand, J.D. (2005). Identification of a
Functional Phosphatidylinositol 3,4,5-Trisphosphate
Binding Site in the Epithelial Na+
Channel *. Journal of Biological Chemistry 280,
37565–37571. 10.1074/jbc.M509071200.
181.
Pochynyuk, O., Tong, Q., Staruschenko, A., Ma,
H.-P., and Stockand, J.D. (2006). Regulation of the epithelial
Na+ channel (ENaC) by phosphatidylinositides.
American Journal of Physiology-Renal Physiology 290, F949–F957.
10.1152/ajprenal.00386.2005.
182.
Pochynyuk, O., Tong, Q., Staruschenko, A., and
Stockand, J.D. (2007). Binding and direct activation of the epithelial
Na+ channel (ENaC) by phosphatidylinositides.
The Journal of Physiology 580, 365–372. 10.1113/jphysiol.2006.127449.
183.
Pohl, P., Joshi, R., Petrvalska, O., Obsil, T.,
and Obsilova, V. (2021). 14-3-3-protein regulates Nedd4-2
by modulating interactions between HECT and WW
domains. Communications Biology 4, 899. 10.1038/s42003-021-02419-0.
184.
Posert, R., and Baconguis, I. (2023). Appia:
Simpler chromatography analysis and visualization. PLOS ONE
18, e0280255. 10.1371/journal.pone.0280255.
185.
PRADERVAND, S., WANG, Q., BURNIER, M.,
BEERMANN, F., HORISBERGER, J.D., HUMMLER, E., and ROSSIER, B.C. (1999).
A
Mouse Model for Liddle’s
Syndrome. Journal of the American Society of Nephrology
10.
186.
Quick, M., and Javitch, J.A. (2007). Monitoring
the function of membrane transport proteins in detergent-solubilized
form. Proceedings of the National Academy of Sciences 104,
3603–3608. 10.1073/pnas.0609573104.
187.
Quinton, P.M. (1983). Chloride impermeability
in cystic fibrosis. Nature 301, 421–422. 10.1038/301421a0.
188.
Randell, S.H., and Boucher, R.C. (2006).
Effective Mucus Clearance Is Essential for
Respiratory Health. Am J Respir Cell Mol Biol 35,
20–28. 10.1165/rcmb.2006-0082SF.
189.
Reeves, P.J., Callewaert, N., Contreras, R.,
and Khorana, H.G. (2002). Structure and function in rhodopsin: High-level expression of rhodopsin with restricted
and homogeneous N-glycosylation by a
tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S
stable mammalian cell line. Proceedings of the National Academy of
Sciences 99, 13419–13424. 10.1073/pnas.212519299.
190.
Renard, S., Voilley, N., Bassilana, F.,
Lazdunski, M., and Barbry, P. (1995). Localization and regulation by
steroids of the α, β and γ subunits of the amiloride-sensitive
Na+ channel in colon, lung and kidney. Pflügers Archiv
430, 299–307. 10.1007/BF00373903.
191.
Riordan, J.R., Rommens, J.M., Kerem, B.-S.,
Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic,
N., Chou, J.-L., et al. (1989). Identification of the Cystic
Fibrosis Gene: Cloning and
Characterization of Complementary DNA. Science
245, 1066–1073. 10.1126/science.2475911.
192.
Rizo, J., and Südhof, T.C. (1998). C2-domains,
Structure and Function of a Universal
Ca2+-binding Domain. Journal of Biological Chemistry
273, 15879–15882. 10.1074/jbc.273.26.15879.
193.
Jennifer K. Roebber, Stephen D. Roper, and
Nirupa Chaudhari (2019). The Role of the Anion
in Salt (NaCl) Detection by
Mouse Taste Buds. J. Neurosci. 39, 6224. 10.1523/JNEUROSCI.2367-18.2019.
194.
Ruffieux-Daidié, D., Poirot, O., Boulkroun, S.,
Verrey, F., Kellenberger, S., and Staub, O. (2008). Deubiquitylation
Regulates Activation and Proteolytic Cleavage
of ENaC. J. Am. Soc. Nephrol. 19, 2170. 10.1681/ASN.2007101130.
195.
Salih, M., Gautschi, I., van Bemmelen, M.X., Di
Benedetto, M., Brooks, A.S., Lugtenberg, D., Schild, L., and Hoorn, E.J.
(2017). A Missense Mutation in the Extracellular
Domain of αENaC Causes Liddle
Syndrome. J. Am. Soc. Nephrol. 28, 3291–3299. 10.1681/ASN.2016111163.
196.
Sandle, G.I., Higgs, N., Crowe, P., Marsh,
M.N., Venkatesan, S., and Peters, T.J. (1990). Cellular basis for
defective electrolyte transport in inflamed human colon.
Gastroenterology 99, 97–105. 10.1016/0016-5085(90)91235-X.
197.
Satlin, L.M., Sheng, S., Woda, C.B., and
Kleyman, T.R. (2001). Epithelial Na+ channels are regulated
by flow. American Journal of Physiology-Renal Physiology 280,
F1010–F1018. 10.1152/ajprenal.2001.280.6.F1010.
198.
Schaedel, C., Marthinsen, L., Kristoffersson,
A.-C., Kornfält, R., Nilsson, K.O., Orlenius, B., and Holmberg, L.
(1999). Lung symptoms in pseudohypoaldosteronism type 1 are associated
with deficiency of the α-subunit of the epithelial sodium channel. The
Journal of Pediatrics 135, 739–745. 10.1016/S0022-3476(99)70094-6.
199.
Schild, L., Canessa, C.M., Shimkets, R.A.,
Gautschi, I., Lifton, R.P., and Rossier, B.C. (1995). A mutation in the
epithelial sodium channel causing Liddle disease increases
channel activity in the Xenopus laevis oocyte expression
system. Proceedings of the National Academy of Sciences 92,
5699–5703. 10.1073/pnas.92.12.5699.
200.
Schild, L., Lu, Y., Gautschi, I., Schneeberger,
E., Lifton, R.P., and Rossier, B.C. (1996). Identification of a
PY motif in the epithelial Na channel subunits
as a target sequence for mutations causing channel activation found in
Liddle syndrome. The EMBO Journal 15, 2381–2387.
10.1002/j.1460-2075.1996.tb00594.x.
201.
Schild, L., Schneeberger, E., Gautschi, I., and
Firsov, D. (1997). Identification of Amino Acid Residues in
the α, β, and γ Subunits of the Epithelial Sodium
Channel (ENaC) Involved in
Amiloride Block and Ion Permeation. Journal of
General Physiology 109, 15–26. 10.1085/jgp.109.1.15.
202.
Shaw, A.S. (2006). Lipid rafts: Now you see
them, now you don’t. Nature Immunology 7, 1139–1142. 10.1038/ni1405.
203.
Sheng, S., Carattino, M.D., Bruns, J.B.,
Hughey, R.P., and Kleyman, T.R. (2006). Furin cleavage activates the
epithelial Na+ channel by relieving Na+
self-inhibition. American Journal of Physiology-Renal Physiology
290, F1488–F1496. 10.1152/ajprenal.00439.2005.
204.
Sheng, S., Li, J., McNulty, K.A., Avery, D.,
and Kleyman, T.R. (2000). Characterization of the Selectivity
Filter of the Epithelial Sodium Channel *. Journal
of Biological Chemistry 275, 8572–8581. 10.1074/jbc.275.12.8572.
205.
Sheng, S., Bruns, J.B., and Kleyman, T.R.
(2004). Extracellular Histidine Residues Crucial for
Na+ Self-inhibition of
Epithelial Na+ Channels *. Journal of
Biological Chemistry 279, 9743–9749. 10.1074/jbc.M311952200.
206.
Sheridan, M.B., Fong, P., Groman, J.D., Conrad,
C., Flume, P., Diaz, R., Harris, C., Knowles, M., and Cutting, G.R.
(2005). Mutations in the beta-subunit of the epithelial Na+
channel in patients with a cystic fibrosis-like syndrome. Human
Molecular Genetics 14, 3493–3498. 10.1093/hmg/ddi374.
207.
Shi, X., and Jarvis, D.L. (2007). Protein N-glycosylation in the baculovirus-insect cell
system. Curr Drug Targets 8, 1116–1125. 10.2174/138945007782151360.
208.
Shi, S., Blobner, B.M., Kashlan, O.B., and
Kleyman, T.R. (2012). Extracellular Finger Domain Modulates
the Response of the Epithelial Sodium Channel
to Shear Stress *. Journal of Biological Chemistry
287, 15439–15444. 10.1074/jbc.M112.346551.
209.
Shigemura, N., Ohkuri, T., Sadamitsu, C.,
Yasumatsu, K., Yoshida, R., Beauchamp, G.K., Bachmanov, A.A., and
Ninomiya, Y. (2008). Amiloride-sensitive NaCl taste
responses are associated with genetic variation of ENaC
α-subunit in mice. American Journal of Physiology-Regulatory,
Integrative and Comparative Physiology 294, R66–R75. 10.1152/ajpregu.00420.2007.
210.
Snyder, P.M., Olson, D.R., McDonald, F.J., and
Bucher, D.B. (2001). Multiple WW Domains, but
Not the C2 Domain, Are Required
for Inhibition of the Epithelial Na+
Channel by Human Nedd4. J. Biol. Chem.
276, 28321–28326. 10.1074/jbc.M011487200.
211.
Snyder, P.M., Olson, D.R., and Bucher, D.B.
(1999). A Pore Segment in DEG/ENaC
Na+ Channels *. Journal of Biological Chemistry
274, 28484–28490. 10.1074/jbc.274.40.28484.
212.
Snyder, P.M., Bucher, D.B., and Olson, D.R.
(2000). Gating Induces a Conformational Change
in the Outer Vestibule of Enac. Journal of
General Physiology 116, 781–790. 10.1085/jgp.116.6.781.
213.
Snyder, P.M., Olson, D.R., and Thomas, B.C.
(2002). Serum and Glucocorticoid-regulated Kinase
Modulates Nedd4-2-mediated Inhibition of the Epithelial
Na+Channel *. Journal of Biological Chemistry
277, 5–8. 10.1074/jbc.C100623200.
214.
Snyder, P.M., Steines, J.C., and Olson, D.R.
(2004). Relative Contribution of Nedd4 and
Nedd4-2 to ENaC Regulation in Epithelia
Determined by RNA Interference *. Journal of
Biological Chemistry 279, 5042–5046. 10.1074/jbc.M312477200.
215.
Alan C. Spector, Nick A. Guagliardo, and Steven
J. St. John (1996). Amiloride Disrupts NaCl versus
KCl Discrimination Performance: Implications
for Salt Taste Coding in Rats. J. Neurosci.
16, 8115. 10.1523/JNEUROSCI.16-24-08115.1996.
216.
Stähler, F., Riedel, K., Demgensky, S.,
Neumann, K., Dunkel, A., Täubert, A., Raab, B., Behrens, M., Raguse,
J.-D., Hofmann, T., et al. (2008). A Role of the
Epithelial Sodium Channel in Human Salt Taste
Transduction? Chemosensory Perception 1, 78–90. 10.1007/s12078-008-9006-4.
217.
Staruschenko, A., Pochynyuk, O.M., Tong, Q.,
and Stockand, J.D. (2005). Ras couples phosphoinositide
3-OH kinase to the epithelial Na+ channel.
Biochimica et Biophysica Acta (BBA) - Biomembranes 1669,
108–115. 10.1016/j.bbamem.2005.01.005.
218.
Staub, O., Gautschi, I., Ishikawa, T.,
Breitschopf, K., Ciechanover, A., Schild, L., and Rotin, D. (1997).
Regulation of stability and function of the epithelial Na+
channel (ENaC) by ubiquitination. The EMBO Journal
16, 6325. 10.1093/emboj/16.21.6325.
219.
Stockand, J.D., Bao, H.-F., Schenck, J., Malik,
B., Middleton, P., Schlanger, L.E., and Eaton, D.C. (2000). Differential
Effects of Protein Kinase C on the
Levels of Epithelial Na+ Channel Subunit
Proteins *. Journal of Biological Chemistry 275,
25760–25765. 10.1074/jbc.M003615200.
220.
Stockand, J.D. (2002). New ideas about
aldosterone signaling in epithelia. American Journal of Physiology-Renal
Physiology 282, F559–F576. 10.1152/ajprenal.00320.2001.
221.
Sudji, I.R., Subburaj, Y., Frenkel, N.,
García-Sáez, A.J., and Wink, M. (2015). Membrane Disintegration
Caused by the Steroid Saponin Digitonin Is Related
to the Presence of Cholesterol. Molecules
20, 20146–20160. 10.3390/molecules201119682.
222.
Suzuki, K., Sato, K., Hisamoto, H., Siswanta,
D., Hayashi, K., Kasahara, N., Watanabe, K., Yamamoto, N., and Sasakura,
H. (1996). Design and Synthesis of Sodium
Ion-Selective Ionophores Based on 16-Crown-5
Derivatives for an Ion-Selective Electrode. Anal.
Chem. 68, 208–215. 10.1021/ac950773j.
223.
Svenningsen, P., Bistrup, C., Friis, U.G.,
Bertog, M., Haerteis, S., Krueger, B., Stubbe, J., Jensen, O.N.,
Thiesson, H.C., Uhrenholt, T.R., et al. (2009). Plasmin
in Nephrotic Urine Activates the Epithelial Sodium
Channel. Journal of the American Society of Nephrology
20.
224.
Tan, C.D., Hobbs, C., Sameni, M., Sloane, B.F.,
Stutts, M.J., and Tarran, R. (2014). Cathepsin B
contributes to Na+ hyperabsorption in cystic fibrosis
airway epithelial cultures. The Journal of Physiology 592,
5251–5268. 10.1113/jphysiol.2013.267286.
225.
Taverna, F., Xiong, Z., Brandes, L., Roder,
J.C., Salter, M.W., and MacDonald, J.F. (2000). The Lurcher
Mutation of an α-Amino-3-hydroxy-5-methyl- 4-isoxazolepropionic
Acid Receptor Subunit Enhances Potency of
Glutamate and Converts an
Antagonist to an Agonist *. Journal of
Biological Chemistry 275, 8475–8479. 10.1074/jbc.275.12.8475.
226.
Tetti, M., Monticone, S., Burrello, J.,
Matarazzo, P., Veglio, F., Pasini, B., Jeunemaitre, X., and Mulatero, P.
(2018). Liddle Syndrome: Review of the
Literature and Description of a New
Case. International Journal of Molecular Sciences 19. 10.3390/ijms19030812.
227.
Thomas, S.V., Kathpalia, P.P., Rajagopal, M.,
Charlton, C., Zhang, J., Eaton, D.C., Helms, M.N., and Pao, A.C. (2011).
Epithelial Sodium Channel Regulation by Cell Surface-associated Serum- and Glucocorticoid-regulated Kinase 1. J. Biol. Chem.
286, 32074–32085. 10.1074/jbc.M111.278283.
228.
Thomas, G. (2002). Furin at the cutting edge:
From protein traffic to embryogenesis and disease. Nature
Reviews Molecular Cell Biology 3, 753–766. 10.1038/nrm934.
229.
Tong, Q., Booth, R.E., Worrell, R.T., and
Stockand, J.D. (2004). Regulation of Na+ transport by
aldosterone: Signaling convergence and cross talk between the
PI3-K and MAPK1/2 cascades. American Journal
of Physiology-Renal Physiology 286, F1232–F1238. 10.1152/ajprenal.00345.2003.
230.
Tong, Q., Gamper, N., Medina, J.L., Shapiro,
M.S., and Stockand, J.D. (2004). Direct Activation of the
Epithelial Na+ Channel by
Phosphatidylinositol 3,4,5-Trisphosphate and
Phosphatidylinositol 3,4-Bisphosphate Produced
by Phosphoinositide 3-OH Kinase *. Journal of
Biological Chemistry 279, 22654–22663. 10.1074/jbc.M401004200.
231.
Umemura, M., Ishigami, T., Tamura, K., Sakai,
M., Miyagi, Y., Nagahama, K., Aoki, I., Uchino, K., Rohrwasser, A.,
Lalouel, J.-M., et al. (2006). Transcriptional diversity and expression
of NEDD4L gene in distal nephron. Biochemical and
Biophysical Research Communications 339, 1129–1137. 10.1016/j.bbrc.2005.11.120.
232.
Valeria Kalienkova, Mowgli Dandamudi, Cristina
Paulino, and Timothy Lynagh (2023). Structural basis for excitatory
neuropeptide signaling. bioRxiv, 2023.04.29.538817. 10.1101/2023.04.29.538817.
233.
Vallet, V., Chraibi, A., Gaeggeler, H.-P.,
Horisberger, J.-D., and Rossier, B.C. (1997). An epithelial serine
protease activates the amiloride-sensitive sodium channel. Nature
389, 607–610. 10.1038/39329.
234.
Waldegger, S., Barth, P., Raber, G., and Lang,
F. (1997). Cloning and characterization of a putative human
serine/threonine protein kinase transcriptionally modified during
anisotonic and isotonic alterations of cell volume. Proceedings of the
National Academy of Sciences 94, 4440–4445. 10.1073/pnas.94.9.4440.
235.
Wang, J., Gambhir, A., Hangyás-Mihályneá, G.,
Murray, D., Golebiewska, U., and McLaughlin, S. (2002). Lateral
Sequestration of Phosphatidylinositol
4,5-Bisphosphate by the Basic Effector Domain
of Myristoylated Alanine-rich C Kinase Substrate Is
Due to Nonspecific Electrostatic Interactions *.
Journal of Biological Chemistry 277, 34401–34412. 10.1074/jbc.M203954200.
236.
Wang, L.-P., Yang, K.-Q., Jiang, X.-J., Wu,
H.-Y., Zhang, H.-M., Zou, Y.-B., Song, L., Bian, J., Hui, R.-T., Liu,
Y.-X., et al. (2015). Prevalence of Liddle Syndrome Among Young
Hypertension Patients of Undetermined Cause in a
Chinese Population. The Journal of Clinical Hypertension
17, 902–907. 10.1111/jch.12598.
237.
Weir, M.R., and Dzau, V.J. (1999). The
renin-angiotensin-aldosterone system: A specific target for hypertension
management. American Journal of Hypertension 12, 205S–213S. 10.1016/S0895-7061(99)00103-X.
238.
Weisz, O.A., Wang, J.-M., Edinger, R.S., and
Johnson, J.P. (2000). Non-coordinate Regulation of
Endogenous Epithelial Sodium Channel (ENaC)
Subunit Expression at the Apical Membrane of
A6 Cells in Response to Various
Transporting Conditions *. Journal of Biological Chemistry
275, 39886–39893. 10.1074/jbc.M003822200.
239.
Whorton, M.R., and MacKinnon, R. (2013). X-ray
structure of the mammalian GIRK2–βγ G-protein complex. Nature 498, 190–197.
10.1038/nature12241.
240.
Wichmann, L., and Althaus, M. (2020). Evolution
of epithelial sodium channels: Current concepts and hypotheses. American
Journal of Physiology-Regulatory, Integrative and Comparative Physiology
319, R387–R400. 10.1152/ajpregu.00144.2020.
241.
Wiemuth, D., Ke, Y., Rohlfs, M., and McDonald,
F.J. (2007). Epithelial sodium channel (ENaC) is
multi-ubiquitinated at the cell surface. Biochem. J. 405,
147–155. 10.1042/BJ20060747.
242.
Wiesner, S., Ogunjimi, A.A., Wang, H.-R.,
Rotin, D., Sicheri, F., Wrana, J.L., and Forman-Kay, J.D. (2007/08/24/).
Autoinhibition of the HECT-Type Ubiquitin Ligase Smurf2
through Its C2 Domain. Cell 130, 651–662. 10.1016/j.cell.2007.06.050.
243.
Williams, C.J., Headd, J.J., Moriarty, N.W.,
Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V., Keedy, D.A., Hintze,
B.J., Chen, V.B., et al. (2018). MolProbity:
More and better reference data for improved all-atom
structure validation. Protein Science 27, 293–315. 10.1002/pro.3330.
244.
Wulff, P., Vallon, V., Huang, D.Y., Völkl, H.,
Yu, F., Richter, K., Jansen, M., Schlünz, M., Klingel, K., Loffing, J.,
et al. (11/01/ 2002). Impaired renal Na+ retention in the
Sgk1-knockout mouse. The Journal of Clinical Investigation 110,
1263–1268. 10.1172/JCI15696.
245.
Yang, K.-Q., Xiao, Y., Tian, T., Gao, L.-G.,
and Zhou, X.-L. (2014). Molecular genetics of Liddle’s
syndrome. Clinica Chimica Acta 436, 202–206. 10.1016/j.cca.2014.05.015.
246.
Yarmolinsky, D.A., Zuker, C.S., and Ryba,
N.J.P. (2009). Common Sense about Taste:
From Mammals to Insects. Cell 139,
234–244. 10.1016/j.cell.2009.10.001.
247.
Yoder, N., and Gouaux, E. (2020). The
His-Gly motif of acid-sensing ion channels resides in a
reentrant “loop” implicated in gating and ion selectivity.
eLife 9, e56527. 10.7554/eLife.56527.
248.
Yoder, N., Yoshioka, C., and Gouaux, E. (2018).
Gating mechanisms of acid-sensing ion channels. Nature 555,
397–401. 10.1038/nature25782.
249.
Yu, J.X., Chao, L., and Chao, J. (1994).
Prostasin is a novel human serine proteinase from seminal fluid.
Purification, tissue distribution, and localization in
prostate gland. Journal of Biological Chemistry 269,
18843–18848. 10.1016/S0021-9258(17)32244-5.
250.
Zabner, J., Smith, J.J., Karp, P.H.,
Widdicombe, J.H., and Welsh, M.J. (1998). Loss of CFTR Chloride
Channels Alters Salt Absorption by Cystic Fibrosis Airway
Epithelia In Vitro. Molecular Cell 2, 397–403. 10.1016/S1097-2765(00)80284-1.
251.
Zachar, R.M., Skjødt, K., Marcussen, N.,
Walter, S., Toft, A., Nielsen, M.R., Jensen, B.L., and Svenningsen, P.
(2015). The
Epithelial Sodium Channel γ-Subunit Is Processed
Proteolytically in Human Kidney. Journal of the
American Society of Nephrology 26.
252.
Zachar, R., Mikkelsen, M.K., Skjødt, K.,
Marcussen, N., Zamani, R., Jensen, B.L., and Svenningsen, P. (2019). The
epithelial Na+ channel α-and γ-subunits are cleaved at
predicted furin-cleavage sites, glycosylated andmembrane associated in
human kidney. Pflügers Archiv - European Journal of Physiology
471, 1383–1396. 10.1007/s00424-019-02321-z.
253.
Zeissig, S., Bergann, T., Fromm, A., Bojarski,
C., Heller, F., Guenther, U., Zeitz, M., Fromm, M., and Schulzke, J.
(2008). Altered ENaC Expression Leads to Impaired
Sodium Absorption in the Noninflamed Intestine in
Crohn’s Disease. Gastroenterology
134, 1436–1447. 10.1053/j.gastro.2008.02.030.
254.
Zhai, Y.-J., Wu, M.-M., Linck, V.A., Zou, L.,
Yue, Q., Wei, S.-P., Song, C., Zhang, S., Williams, C.R., Song, B.-L.,
et al. (2019/07/01/). Intracellular cholesterol stimulates
ENaC by interacting with
phosphatidylinositol‑4,5‑bisphosphate and mediates cyclosporine A-induced hypertension. Biochimica et Biophysica
Acta (BBA) - Molecular Basis of Disease 1865, 1915–1924. 10.1016/j.bbadis.2018.08.027.
255.
Zhang, L., Wang, X., Chen, J., Kleyman, T.R.,
and Sheng, S. (2022). Accessibility of ENaC extracellular
domain central core residues. Journal of Biological Chemistry
298. 10.1016/j.jbc.2022.101860.
256.
Zhang, L., Wang, X., Chen, J., Sheng, S., and
Kleyman, T.R. (2023). Extracellular intersubunit interactions modulate
epithelial Na+ channel gating. Journal of Biological
Chemistry 299, 102914. 10.1016/j.jbc.2023.102914.
257.
Zhao, G.Q., Zhang, Y., Hoon, M.A.,
Chandrashekar, J., Erlenbach, I., Ryba, N.J.P., and Zuker, C.S. (2003).
The Receptors for Mammalian Sweet and
Umami Taste. Cell 115, 255–266. 10.1016/S0092-8674(03)00844-4.
258.
Zhou, R., and Snyder, P.M. (2005). Nedd4-2
Phosphorylation Induces Serum and Glucocorticoid-regulated Kinase (SGK)
Ubiquitination and Degradation. J. Biol. Chem.
280, 4518–4523. 10.1074/jbc.M411053200.