References

1.
Abriel, H., Loffing, J., Rebhun, J.F., Pratt, J.H., Schild, L., Horisberger, J.-D., Rotin, D., and Staub, O. (1999). Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. J Clin Invest 103, 667–673. 10.1172/JCI5713.
2.
Ackerman, M.J., and Clapham, D.E. (1997). Ion ChannelsBasic Science and Clinical Disease. N Engl J Med 336, 1575–1586. 10.1056/NEJM199705293362207.
3.
Adebamiro, A., Cheng, Y., Rao, U.S., Danahay, H., and Bridges, R.J. (2007). A Segment of γ ENaC Mediates Elastase Activation of Na+ Transport. Journal of General Physiology 130, 611–629. 10.1085/jgp.200709781.
4.
Aguilar-Camacho, J.M., Foreman, K., Jaimes-Becerra, A., Aharoni, R., Gründer, S., and Moran, Y. (2023). Functional analysis in a model sea anemone reveals phylogenetic complexity and a role in cnidocyte discharge of DEG/ENaC ion channels. Communications Biology 6, 17. 10.1038/s42003-022-04399-1.
5.
Aiyer, S., Zhang, C., Baldwin, P.R., and Lyumkis, D. (2021). Evaluating Local and Directional Resolution of Cryo-EMCryo-electron microscopy (Cryo-EM) Density Maps. In cryoEM: Methods and Protocols, T. Gonen and B. L. Nannenga, eds. (Springer US), pp. 161–187. 10.1007/978-1-0716-0966-8_8.
6.
Alli, A.A., Bao, H.-F., Alli, A.A., Aldrugh, Y., Song, J.Z., Ma, H.-P., Yu, L., Al-Khalili, O., and Eaton, D.C. (2012). Phosphatidylinositol phosphate-dependent regulation of Xenopus ENaC by MARCKS protein. American Journal of Physiology-Renal Physiology 303, F800–F811. 10.1152/ajprenal.00703.2011.
7.
Alli, A.A., Bao, H.-F., Liu, B.-C., Yu, L., Aldrugh, S., Montgomery, D.S., Ma, H.-P., and Eaton, D.C. (2015). Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane. American Journal of Physiology-Renal Physiology 309, F456–F463. 10.1152/ajprenal.00631.2014.
8.
Althaus, M., Bogdan, R., Clauss, W.G., and Fronius, M. (2007). Mechano-sensitivity of epithelial sodium channels (ENaCs): Laminar shear stress increases ion channel open probability. The FASEB Journal 21, 2389–2399. 10.1096/fj.06-7694com.
9.
Amasheh, S., Barmeyer, C., Koch, C.S., Tavalali, S., Mankertz, J., Epple, H.-J., Gehring, M.M., Florian, P., Kroesen, A.-J., Zeitz, M., et al. (2004). Cytokine-dependent transcriptional down-regulation of epithelial sodium channel in ulcerative colitis. Gastroenterology 126, 1711–1720. 10.1053/j.gastro.2004.03.010.
10.
Araki, N., Umemura, M., Miyagi, Y., Yabana, M., Miki, Y., Tamura, K., Uchino, K., Aoki, R., Goshima, Y., Umemura, S., et al. (2008). Expression, Transcription, and Possible Antagonistic Interaction of the Human Nedd4L Gene Variant. Hypertension 51, 773–777. 10.1161/HYPERTENSIONAHA.107.102061.
11.
Archer, C.R., Enslow, B.T., Carver, C.M., and Stockand, J.D. (2020). Phosphatidylinositol 4,5-bisphosphate directly interacts with the β and γ subunits of the sodium channel ENaC. Journal of Biological Chemistry 295, 7958–7969. 10.1074/jbc.RA120.012606.
12.
Asher, C., Wald, H., Rossier, B.C., and Garty, H. (1996). Aldosterone-induced increase in the abundance of Na+ channel subunits. American Journal of Physiology-Cell Physiology 271, C605–C611. 10.1152/ajpcell.1996.271.2.C605.
13.
Askwith, C.C., Benson, C.J., Welsh, M.J., and Snyder, P.M. (2001). DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proceedings of the National Academy of Sciences 98, 6459–6463. 10.1073/pnas.111155398.
14.
Baconguis, I., and Gouaux, E. (2012). Structural plasticity and dynamic selectivity of acid-sensing ion channel–spider toxin complexes. Nature 489, 400–405. 10.1038/nature11375.
15.
Baconguis, I., Bohlen, C.J., Goehring, A., Julius, D., and Gouaux, E. (2014). X-Ray Structure of Acid-Sensing Ion Channel 1–Snake Toxin Complex Reveals Open State of a Na+-Selective Channel. Cell 156, 717–729. 10.1016/j.cell.2014.01.011.
16.
Balchak, D.M., Thompson, R.N., and Kashlan, O.B. (2018). The epithelial Na+ channel γ subunit autoinhibitory tract suppresses channel activity by binding the γ subunit’s finger–thumb domain interface. Journal of Biological Chemistry 293, 16217–16225. 10.1074/jbc.RA118.004362.
17.
Bao, H.-F., Thai, T.L., Yue, Q., Ma, H.-P., Eaton, A.F., Cai, H., Klein, J.D., Sands, J.M., and Eaton, D.C. (2014). ENaC activity is increased in isolated, split-open cortical collecting ducts from protein kinase knockout mice. American Journal of Physiology-Renal Physiology 306, F309–F320. 10.1152/ajprenal.00519.2013.
18.
Bertog, M., Cuffe, J.E., Pradervand, S., Hummler, E., Hartner, A., Porst, M., Hilgers, K.F., Rossier, B.C., and Korbmacher, C. (2008). Aldosterone responsiveness of the epithelial sodium channel (ENaC) in colon is increased in a mouse model for Liddle’s syndrome. The Journal of Physiology 586, 459–475. 10.1113/jphysiol.2007.140459.
19.
Bize, V., and Horisberger, J.-D. (2007). Sodium self-inhibition of human epithelial sodium channel: Selectivity and affinity of the extracellular sodium sensing site. American Journal of Physiology-Renal Physiology 293, F1137–F1146. 10.1152/ajprenal.00100.2007.
20.
Bohnert, B.N., Menacher, M., Janessa, A., Wörn, M., Schork, A., Daiminger, S., Kalbacher, H., Häring, H.-U., Daniel, C., Amann, K., et al. (2018). Aprotinin prevents proteolytic epithelial sodium channel (ENaC) activation and volume retention in nephrotic syndrome. Kidney International 93, 159–172. 10.1016/j.kint.2017.07.023.
21.
Bruce, M.C., Kanelis, V., Fouladkou, F., Debonneville, A., Staub, O., and Rotin, D. (2008). Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain. Biochem. J. 415, 155. 10.1042/BJ20071708.
22.
Bruns, J.B., Carattino, M.D., Sheng, S., Maarouf, A.B., Weisz, O.A., Pilewski, J.M., Hughey, R.P., and Kleyman, T.R. (2007). Epithelial Na+ Channels Are Fully Activated by Furin- and Prostasin-dependent Release of an Inhibitory Peptide from the γ-Subunit. J. Biol. Chem. 282, 6153–6160. 10.1074/jbc.M610636200.
23.
Buetow, L., and Huang, D.T. (2016). Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nature Reviews Molecular Cell Biology 17, 626–642. 10.1038/nrm.2016.91.
24.
Butterworth, M.B., Edinger, R.S., Ovaa, H., Burg, D., Johnson, J.P., and Frizzell, R.A. (2007). The Deubiquitinating Enzyme UCH-L3 Regulates the Apical Membrane Recycling of the Epithelial Sodium Channel *. Journal of Biological Chemistry 282, 37885–37893. 10.1074/jbc.M707989200.
25.
Butterworth, M.B., Edinger, R.S., Frizzell, R.A., and Johnson, J.P. (2009). Regulation of the epithelial sodium channel by membrane trafficking. American Journal of Physiology-Renal Physiology 296, F10–F24. 10.1152/ajprenal.90248.2008.
26.
Button, B., Cai, L.-H., Ehre, C., Kesimer, M., Hill, D.B., Sheehan, J.K., Boucher, R.C., and Rubinstein, M. (2012). A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia. Science 337, 937–941. 10.1126/science.1223012.
27.
Caldwell, R.A., Boucher, R.C., and Stutts, M.J. (2004). Serine protease activation of near-silent epithelial Na+ channels. American Journal of Physiology-Cell Physiology 286, C190–C194. 10.1152/ajpcell.00342.2003.
28.
Caldwell, R.A., Boucher, R.C., and Stutts, M.J. (2005). Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. American Journal of Physiology-Lung Cellular and Molecular Physiology 288, L813–L819. 10.1152/ajplung.00435.2004.
29.
Canessa, C.M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J.-D., and Rossier, B.C. (1994). Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463–467. 10.1038/367463a0.
30.
Carattino, M.D., Sheng, S., and Kleyman, T.R. (2004). Epithelial Na+ Channels Are Activated by Laminar Shear Stress *. Journal of Biological Chemistry 279, 4120–4126. 10.1074/jbc.M311783200.
31.
Carattino, M.D., Passero, C.J., Steren, C.A., Maarouf, A.B., Pilewski, J.M., Myerburg, M.M., Hughey, R.P., and Kleyman, T.R. (2008). Defining an inhibitory domain in the α-subunit of the epithelial sodium channel. American Journal of Physiology-Renal Physiology 294, F47–F52. 10.1152/ajprenal.00399.2007.
32.
Carattino, M.D., and Della Vecchia, M.C. (2012). Contribution of Residues in Second Transmembrane Domain of ASIC1a Protein to Ion Selectivity *. Journal of Biological Chemistry 287, 12927–12934. 10.1074/jbc.M111.329284.
33.
Chalfant, M.L., Denton, J.S., Berdiev, B.K., Ismailov, I.I., Benos, D.J., and Stanton, B.A. (1999). Intracellular H+ regulates the α-subunit of ENaC, the epithelial Na+ channel. American Journal of Physiology-Cell Physiology 276, C477–C486. 10.1152/ajpcell.1999.276.2.C477.
34.
Chandrashekar, J., Hoon, M.A., Ryba, N.J.P., and Zuker, C.S. (2006). The receptors and cells for mammalian taste. Nature 444, 288–294. 10.1038/nature05401.
35.
Chandrashekar, J., Kuhn, C., Oka, Y., Yarmolinsky, D.A., Hummler, E., Ryba, N.J.P., and Zuker, C.S. (2010). The cells and peripheral representation of sodium taste in mice. Nature 464, 297–301. 10.1038/nature08783.
36.
Chang, S.S., Grunder, S., Hanukoglu, A., Rösler, A., Mathew, P.M., Hanukoglu, I., Schild, L., Lu, Y., Shimkets, R.A., Nelson-Williams, C., et al. (1996). Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nature Genetics 12, 248–253. 10.1038/ng0396-248.
37.
CHEEK, D.B., and PERRY, J.W. (1958). A salt wasting syndrome in infancy. Arch Dis Child 33, 252–256. 10.1136/adc.33.169.252.
38.
Chen, Z., Jiang, H., Xu, W., Li, X., Dempsey, D.R., Zhang, X., Devreotes, P., Wolberger, C., Amzel, L.M., Gabelli, S.B., et al. (2017/05/04/). A Tunable Brake for HECT Ubiquitin Ligases. Mol. Cell 66, 345–357.e6. 10.1016/j.molcel.2017.03.020.
39.
Chen, S., Bhargava, A., Mastroberardino, L., Meijer, O.C., Wang, J., Buse, P., Firestone, G.L., Verrey, F., and Pearce, D. (1999). Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proceedings of the National Academy of Sciences 96, 2514–2519. 10.1073/pnas.96.5.2514.
40.
Chen, J., Kleyman, T.R., and Sheng, S. (2013). Gain-of-function variant of the human epithelial sodium channel. American Journal of Physiology-Renal Physiology 304, F207–F213. 10.1152/ajprenal.00563.2012.
41.
Chraïbi, A., and Horisberger, J.-D. (2002). Na Self Inhibition of Human Epithelial Na Channel. The Journal of General Physiology 120, 133. 10.1085/jgp.20028612.
42.
Collawn, J.F., Lazrak, A., Bebok, Z., and Matalon, S. (2012). The CFTR and ENaC debate: How important is ENaC in CF lung disease? Am J Physiol Lung Cell Mol Physiol 302, L1141–1146. 10.1152/ajplung.00036.2012.
43.
Collier, D.M., and Snyder, P.M. (2009). Extracellular Protons Regulate Human ENaC by Modulating Na+ Self-inhibition *. Journal of Biological Chemistry 284, 792–798. 10.1074/jbc.M806954200.
44.
45.
Dagenais, A., Denis, C., Vives, M.-F., Girouard, S., Massé, C., Nguyen, T., Yamagata, T., Grygorczyk, C., Kothary, R., and Berthiaume, Y. (2001). Modulation of α-ENaC and Α1-Na+-K+-ATPase by cAMP and dexamethasone in alveolar epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology 281, L217–L230. 10.1152/ajplung.2001.281.1.L217.
46.
Dandamudi, M., Hausen, H., and Lynagh, T. (2022). Comparative analysis defines a broader FMRFamide-gated sodium channel family and determinants of neuropeptide sensitivity. Journal of Biological Chemistry 298. 10.1016/j.jbc.2022.102086.
47.
Danilova, V., Hellekant, G., Tinti, J.-M., and Nofre, C. (1998). Gustatory Responses of the Hamster Mesocricetus auratus to Various Compounds Considered Sweet by Humans. Journal of Neurophysiology 80, 2102–2112. 10.1152/jn.1998.80.4.2102.
48.
Debonneville, C., Flores, S.Y., Kamynina, E., Plant, P.J., Tauxe, C., Thomas, M.A., Münster, C., Chraïbi, A., Pratt, J.H., Horisberger, J.-D., et al. (2001). Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. The EMBO Journal 20, 7052–7059. 10.1093/emboj/20.24.7052.
49.
de la Rosa, D.A., Zhang, P., Náray-Fejes-Tóth, A., Fejes-Tóth, G., and Canessa, C.M. (1999). The Serum and Glucocorticoid Kinase sgk Increases the Abundance of Epithelial Sodium Channels in the Plasma Membrane of Xenopus Oocytes *. Journal of Biological Chemistry 274, 37834–37839. 10.1074/jbc.274.53.37834.
50.
Desor, J.A., and Finn, J. (1989). Effects of amiloride on salt taste in humans. Chemical Senses 14, 793–803. 10.1093/chemse/14.6.793.
51.
Diakov, A., and Korbmacher, C. (2004). A Novel Pathway of Epithelial Sodium Channel Activation Involves a Serum- and Glucocorticoid-inducible Kinase Consensus Motif in the C Terminus of the Channel’s α-Subunit *. Journal of Biological Chemistry 279, 38134–38142. 10.1074/jbc.M403260200.
52.
Diakov, A., Bera, K., Mokrushina, M., Krueger, B., and Korbmacher, C. (2008). Cleavage in the γ-subunit of the epithelial sodium channel (ENaC) plays an important role in the proteolytic activation of near-silent channels. J Physiol 586, 4587–4608. 10.1113/jphysiol.2008.154435.
53.
Dijkink, L., Hartog, A., Deen, P.M.T., van Os, C.H., and Bindels, R.J.M. (1999). Time-dependent regulation by aldosterone of the amiloride-sensitive Na+ channel in rabbit kidney. Pflügers Archiv 438, 354–360. 10.1007/s004240050920.
54.
Drummond, H.A., Price, M.P., Welsh, M.J., and Abboud, F.M. (1998). A Molecular Component of the Arterial Baroreceptor Mechanotransducer. Neuron 21, 1435–1441. 10.1016/S0896-6273(00)80661-3.
55.
Drummond, H.A., Gebremedhin, D., and Harder, D.R. (2004). Degenerin/Epithelial Na+ Channel Proteins Components of a Vascular Mechanosensor. Hypertension 44, 643–648. 10.1161/01.HYP.0000144465.56360.ad.
56.
Eaton, D.C., and Marunaka, Y. (1990). Chapter 3 Ion Channel Fluctuations: Noise and Single-Channel Measurements. In Current Topics in Membranes and Transport, F. Bronner, ed. (Academic Press), pp. 61–114. 10.1016/S0070-2161(08)60229-4.
57.
Edelheit, O., Hanukoglu, I., Gizewska, M., Kandemir, N., Tenenbaum-Rakover, Y., Yurdakök, M., Zajaczek, S., and Hanukoglu, A. (2005). Novel mutations in epithelial sodium channel (ENaC) subunit genes and phenotypic expression of multisystem pseudohypoaldosteronism. Clinical Endocrinology 62, 547–553. 10.1111/j.1365-2265.2005.02255.x.
58.
Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica Section D 66, 486–501.
59.
Epple, H.J., Amasheh, S., Mankertz, J., Goltz, M., Schulzke, J.D., and Fromm, M. (2000). Early aldosterone effect in distal colon by transcriptional regulation of ENaC subunits. American Journal of Physiology-Gastrointestinal and Liver Physiology 278, G718–G724. 10.1152/ajpgi.2000.278.5.G718.
60.
Escoubet, B., Coureau, C., Bonvalet, J.P., and Farman, N. (1997). Noncoordinate regulation of epithelial Na channel and Na pump subunit mRNAs in kidney and colon by aldosterone. American Journal of Physiology-Cell Physiology 272, C1482–C1491. 10.1152/ajpcell.1997.272.5.C1482.
61.
Fakitsas, P., Adam, G., Daidie[Combining Acute Accent], D.A.A., van Bemmelen, M.X., Fouladkou, F., Patrignani, A., Wagner, U., Warth, R., Camargo, S.M.R., Staub, O., et al. (2007). Early Aldosterone-Induced Gene Product Regulates the Epithelial Sodium Channel by Deubiquitylation. Journal of the American Society of Nephrology 18.
62.
Fejes-Tóth, G., Frindt, G., Náray-Fejes-Tóth, A., and Palmer, L.G. (2008). Epithelial Na+ channel activation and processing in mice lacking SGK1. American Journal of Physiology-Renal Physiology 294, F1298–F1305. 10.1152/ajprenal.00579.2007.
63.
Firsov, D., Schild, L., Gautschi, I., Mérillat, A.-M., Schneeberger, E., and Rossier, B.C. (1996). Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: A quantitative approach. Proceedings of the National Academy of Sciences 93, 15370–15375. 10.1073/pnas.93.26.15370.
64.
Fotia, A.B., Dinudom, A., Shearwin, K.E., Koch, J.-P., Korbmacher, C., Cook, D.I., and Kumar, S. (2003). The role of individual Nedd4–2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. The FASEB Journal 17, 70–72. 10.1096/fj.02-0497fje.
65.
Frindt, G., and Palmer, L.G. (2009). Surface expression of sodium channels and transporters in rat kidney: Effects of dietary sodium. Am. J. Physiol. Renal Physiol. 297, F1249–F1255. 10.1152/ajprenal.00401.2009.
66.
Frindt, G., and Palmer, L.G. (2015). Acute effects of aldosterone on the epithelial Na channel in rat kidney. American Journal of Physiology-Renal Physiology 308, F572–F578. 10.1152/ajprenal.00585.2014.
67.
Frindt, G., Yang, L., Bamberg, K., and Palmer, L.G. (2018). Na restriction activates epithelial Na channels in rat kidney through two mechanisms and decreases distal Na+ delivery. The Journal of Physiology 596, 3585–3602. 10.1113/JP275988.
68.
Fronius, M., Bogdan, R., Althaus, M., Morty, R.E., and Clauss, W.G. (2010). Epithelial Na+ channels derived from human lung are activated by shear force. Respiratory Physiology & Neurobiology 170, 113–119. 10.1016/j.resp.2009.11.004.
69.
Fuchs, W., Larsen, E.H., and Lindemann, B. (1977). Current—voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. The Journal of Physiology 267, 137–166. 10.1113/jphysiol.1977.sp011805.
70.
Fyfe, G.K., and Canessa, C.M. (1998). Subunit Composition Determines the Single Channel Kinetics of the Epithelial Sodium Channel. Journal of General Physiology 112, 423–432. 10.1085/jgp.112.4.423.
71.
Gannon, K.S., and Contreras, R.J. (1995). Sodium intake linked to amiloride-sensitive gustatory transduction in C57BL/6J and 129/7 mice. Physiology & Behavior 57, 231–239. 10.1016/0031-9384(94)00279-E.
72.
García-Caballero, A., Dang, Y., He, H., and Stutts, M.J. (2008). ENaC Proteolytic Regulation by Channel-activating Protease 2. Journal of General Physiology 132, 521–535. 10.1085/jgp.200810030.
73.
Garcia-Caballero, A., Ishmael, S.S., Dang, Y., Gillie, D., Bond, J.S., Milgram, S.L., and Stutts, M.J. (2011). Activation of the epithelial sodium channel by the metalloprotease meprin β subunit. Channels 5, 14–22. 10.4161/chan.5.1.13759.
74.
Garty, H., and Palmer, L.G. (1997). Epithelial sodium channels: Function, structure, and regulation. Physiol. Rev. 77, 359–396. 10.1152/physrev.1997.77.2.359.
75.
Geller, D.S., Rodriguez-Soriano, J., Boado, A.V., Schifter, S., Bayer, M., Chang, S.S., and Lifton, R.P. (1998). Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nature Genetics 19, 279–281. 10.1038/966.
76.
Goulet, C.C., Volk, K.A., Adams, C.M., Prince, L.S., Stokes, J.B., and Snyder, P.M. (1998). Inhibition of the Epithelial Na+ Channel by Interaction of Nedd4 with a PY Motif Deleted in Liddle’s Syndrome *. Journal of Biological Chemistry 273, 30012–30017. 10.1074/jbc.273.45.30012.
77.
GRUBB, B.R., and BOUCHER, R.C. (1999). Pathophysiology of Gene-Targeted Mouse Models for Cystic Fibrosis. Physiological Reviews 79, S193–S214. 10.1152/physrev.1999.79.1.S193.
78.
Grubb, B.R., O’Neal, W.K., Ostrowski, L.E., Kreda, S.M., Button, B., and Boucher, R.C. (2012). Transgenic hCFTR expression fails to correct β-ENaC mouse lung disease. American Journal of Physiology-Lung Cellular and Molecular Physiology 302, L238–L247. 10.1152/ajplung.00083.2011.
79.
Gründer, S., Firsov, D., Chang, S.S., Jaeger, N.F., Gautschi, I., Schild, L., Lifton, R.P., and Rossier, B.C. (1997). A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. The EMBO Journal 16, 899–907. 10.1093/emboj/16.5.899.
80.
Gründer, S., Fowler Jaeger, N., Gautschi, I., Schild, L., and Rossier, B.C. (1999). Identification of a highly conserved sequence at the N-terminus of the epithelial Na+ channel α subunit involved in gating. Pflügers Archiv 438, 709–715. 10.1007/s004249900119.
81.
Gu, G., Caldwell, G.A., and Chalfie, M. (1996). Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proceedings of the National Academy of Sciences 93, 6577–6582. 10.1073/pnas.93.13.6577.
82.
Guyton, A.C. (1991). Blood Pressure ControlSpecial Role of the Kidneys and Body Fluids. Science 252, 1813–1816. 10.1126/science.2063193.
83.
Haerteis, S., Krappitz, M., Bertog, M., Krappitz, A., Baraznenok, V., Henderson, I., Lindström, E., Murphy, J.E., Bunnett, N.W., and Korbmacher, C. (2012). Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflügers Archiv - European Journal of Physiology 464, 353–365. 10.1007/s00424-012-1138-3.
84.
Hanukoglu, I., and Hanukoglu, A. (2016/04/01/). Epithelial sodium channel (ENaC) family: Phylogeny, structure–function, tissue distribution, and associated inherited diseases. Gene 579, 95–132. 10.1016/j.gene.2015.12.061.
85.
Harder, D., and Fotiadis, D. (2012). Measuring substrate binding and affinity of purified membrane transport proteins using the scintillation proximity assay. Nature Protocols 7, 1569–1578. 10.1038/nprot.2012.090.
86.
Harris, M., Garcia-Caballero, A., Stutts, M.J., Firsov, D., and Rossier, B.C. (2008). Preferential Assembly of Epithelial Sodium Channel (ENaC) Subunits in Xenopus Oocytes: ROLE OF FURIN-MEDIATED ENDOGENOUS PROTEOLYSIS *. Journal of Biological Chemistry 283, 7455–7463. 10.1074/jbc.M707399200.
87.
Hesselager, M., Timmermann, D.B., and Ahring, P.K. (2004). pH Dependency and Desensitization Kinetics of Heterologously Expressed Combinations of Acid-sensing Ion Channel Subunits*. Journal of Biological Chemistry 279, 11006–11015. 10.1074/jbc.M313507200.
88.
Hill, W.G., An, B., and Johnson, J.P. (2002). Endogenously Expressed Epithelial Sodium Channel Is Present in Lipid Rafts in A6 Cells. J. Biol. Chem. 277, 33541–33544. 10.1074/jbc.C200309200.
89.
Hill, W.G., Butterworth, M.B., Wang, H., Edinger, R.S., Lebowitz, J., Peters, K.W., Frizzell, R.A., and Johnson, J.P. (2007). The Epithelial Sodium Channel (ENaC) Traffics to Apical Membrane in Lipid Rafts in Mouse Cortical Collecting Duct Cells. J. Biol. Chem. 282, 37402–37411. 10.1074/jbc.M704084200.
90.
Hille, B. (2001). Ion Channels of Excitable Membranes 3rd ed. (Sinauer Associates).
91.
Hughey, R.P., Mueller, G.M., Bruns, J.B., Kinlough, C.L., Poland, P.A., Harkleroad, K.L., Carattino, M.D., and Kleyman, T.R. (2003). Maturation of the Epithelial Na+ Channel Involves Proteolytic Processing of the α- and γ-Subunits. J. Biol. Chem. 278, 37073–37082. 10.1074/jbc.M307003200.
92.
Hughey, R.P., Bruns, J.B., Kinlough, C.L., and Kleyman, T.R. (2004). Distinct Pools of Epithelial Sodium Channels Are Expressed at the Plasma Membrane. J. Biol. Chem. 279, 48491–48494. 10.1074/jbc.C400460200.
93.
Hughey, R.P., Bruns, J.B., Kinlough, C.L., Harkleroad, K.L., Tong, Q., Carattino, M.D., Johnson, J.P., Stockand, J.D., and Kleyman, T.R. (2004). Epithelial Sodium Channels Are Activated by Furin-dependent Proteolysis *. Journal of Biological Chemistry 279, 18111–18114. 10.1074/jbc.C400080200.
94.
Ichimura, T., Yamamura, H., Sasamoto, K., Tominaga, Y., Taoka, M., Kakiuchi, K., Shinkawa, T., Takahashi, N., Shimada, S., and Isobe, T. (2005). 14-3-3 Proteins Modulate the Expression of Epithelial Na+ Channels by Phosphorylation-dependent Interaction with Nedd4-2 Ubiquitin Ligase *. Journal of Biological Chemistry 280, 13187–13194. 10.1074/jbc.M412884200.
95.
Ingólfsson, H.I., Melo, M.N., van Eerden, F.J., Arnarez, C., Lopez, C.A., Wassenaar, T.A., Periole, X., de Vries, A.H., Tieleman, D.P., and Marrink, S.J. (2014). Lipid Organization of the Plasma Membrane. J. Am. Chem. Soc. 136, 14554–14559. 10.1021/ja507832e.
96.
Itani, O.A., Campbell, J.R., Herrero, J., Snyder, P.M., and Thomas, C.P. (2003). Alternate promoters and variable splicing lead to hNedd4–2 isoforms with a C2 domain and varying number of WW domains. American Journal of Physiology-Renal Physiology 285, F916–F929. 10.1152/ajprenal.00203.2003.
97.
Itani, O.A., Stokes, J.B., and Thomas, C.P. (2005). Nedd4–2 isoforms differentially associate with ENaC and regulate its activity. American Journal of Physiology-Renal Physiology 289, F334–F346. 10.1152/ajprenal.00394.2004.
98.
Jasti, J., Furukawa, H., Gonzales, E.B., and Gouaux, E. (2007). Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449, 316–323. 10.1038/nature06163.
99.
Ji, H.-L., Chalfant, M.L., Jovov, B., Lockhart, J.P., Parker, S.B., Fuller, C.M., Stanton, B.A., and Benos, D.J. (2000). The Cytosolic Termini of the β- and γ-ENaC Subunits Are Involved in the Functional Interactions between Cystic Fibrosis Transmembrane Conductance Regulator and Epithelial Sodium Channel *. Journal of Biological Chemistry 275, 27947–27956. 10.1074/jbc.M002848200.
100.
Ji, H.-L., Zhao, R., Komissarov, A.A., Chang, Y., Liu, Y., and Matthay, M.A. (2015). Proteolytic Regulation of Epithelial Sodium Channels by Urokinase Plasminogen Activator. Journal of Biological Chemistry 290, 5241–5255. 10.1074/jbc.M114.623496.
101.
Joshi, R., Pohl, P., Strachotova, D., Herman, P., Obsil, T., and Obsilova, V. (2022). Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains. Biophysical Journal 121, 1299–1311. 10.1016/j.bpj.2022.02.025.
102.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. 10.1038/s41586-021-03819-2.
103.
Kadurin, I., Golubovic, A., Leisle, L., Schindelin, H., and Gründer, S. (2008). Differential effects of N-glycans on surface expression suggest structural differences between the acid-sensing ion channel (ASIC) 1a and ASIC1b. Biochemical Journal 412, 469–475. 10.1042/BJ20071614.
104.
Kamynina, E., Debonneville, C., Bens, M., Vandewalle, A., and Staub, O. (2001). A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. The FASEB Journal 15, 204–214. 10.1096/fj.00-0191com.
105.
Kamynina, E., Tauxe, C., and Staub, O. (2001). Distinct characteristics of two human Nedd4 proteins with respect to epithelial Na+ channel regulation. American Journal of Physiology-Renal Physiology 281, F469–F477. 10.1152/ajprenal.2001.281.3.F469.
106.
Kanelis, V., Farrow, N.A., Kay, L.E., Rotin, D., and Forman-Kay, J.D. (1998). NMR studies of tandem WW domains of Nedd4 in complex with a PY motif-containing region of the epithelial sodium channel. Biochem. Cell Biol. 76, 341–350. 10.1139/o98-042.
107.
Karpushev, A.V., Ilatovskaya, D.V., and Staruschenko, A. (2010). The actin cytoskeleton and small G protein RhoA are not involved in flow-dependent activation of ENaC. BMC Research Notes 3, 210. 10.1186/1756-0500-3-210.
108.
Kashlan, O.B., and Kleyman, T.R. (2011). ENaC structure and function in the wake of a resolved structure of a family member. American Journal of Physiology-Renal Physiology 301, F684–F696. 10.1152/ajprenal.00259.2011.
109.
Kashlan, O.B., Boyd, C.R., Argyropoulos, C., Okumura, S., Hughey, R.P., Grabe, M., and Kleyman, T.R. (2010). Allosteric inhibition of the epithelial Na+ channel through peptide binding at peripheral finger and thumb domains. J Biol Chem 285, 35216–35223. 10.1074/jbc.M110.167064.
110.
Kashlan, O.B., Adelman, J.L., Okumura, S., Blobner, B.M., Zuzek, Z., Hughey, R.P., Kleyman, T.R., and Grabe, M. (2011). Constraint-based, Homology Model of the Extracellular Domain of the Epithelial Na+ Channel α Subunit Reveals a Mechanism of Channel Activation by Proteases. J. Biol. Chem. 286, 649–660. 10.1074/jbc.M110.167098.
111.
Kashlan, O.B., Blobner, B.M., Zuzek, Z., Carattino, M.D., and Kleyman, T.R. (2012). Inhibitory Tract Traps the Epithelial Na+ Channel in a Low Activity Conformation *. Journal of Biological Chemistry 287, 20720–20726. 10.1074/jbc.M112.358218.
112.
Kashlan, O.B., Blobner, B.M., Zuzek, Z., Tolino, M., and Kleyman, T.R. (2015). Na+ Inhibits the Epithelial Na+ Channel by Binding to a Site in an Extracellular Acidic Cleft *. Journal of Biological Chemistry 290, 568–576. 10.1074/jbc.M114.606152.
113.
Kashlan, O.B., Kinlough, C.L., Myerburg, M.M., Shi, S., Chen, J., Blobner, B.M., Buck, T.M., Brodsky, J.L., Hughey, R.P., and Kleyman, T.R. (2018). N-linked glycans are required on epithelial Na(+) channel subunits for maturation and surface expression. Am. J. Physiol. Renal Physiol. 314, F483–f492. 10.1152/ajprenal.00195.2017.
114.
Kasimova, M.A., Lynagh, T., Sheikh, Z.P., Granata, D., Borg, C.B., Carnevale, V., and Pless, S.A. (2020). Evolutionarily Conserved Interactions within the Pore Domain of Acid-Sensing Ion Channels. Biophysical Journal 118, 861–872. 10.1016/j.bpj.2019.09.001.
115.
Kawate, T., and Gouaux, E. (2006/04/01/). Fluorescence-Detection Size-Exclusion Chromatography for Precrystallization Screening of Integral Membrane Proteins. Structure 14, 673–681. 10.1016/j.str.2006.01.013.
116.
Kellenberger, S., Gautschi, I., and Schild, L. (1999). A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proceedings of the National Academy of Sciences 96, 4170–4175. 10.1073/pnas.96.7.4170.
117.
Kellenberger, S., Hoffmann-Pochon, N., Gautschi, I., Schneeberger, E., and Schild, L. (1999). On the Molecular Basis of Ion Permeation in the Epithelial Na+ Channel. Journal of General Physiology 114, 13–30. 10.1085/jgp.114.1.13.
118.
Kellenberger, S., Auberson, M., Gautschi, I., Schneeberger, E., and Schild, L. (2001). Permeability Properties of Enac Selectivity Filter Mutants. Journal of General Physiology 118, 679–692. 10.1085/jgp.118.6.679.
119.
Kellenberger, S., Gautschi, I., Rossier, B.C., and Schild, L. (06/15/ 1998). Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. The Journal of Clinical Investigation 101, 2741–2750. 10.1172/JCI2837.
120.
Kemendy, A.E., Kleyman, T.R., and Eaton, D.C. (1992). Aldosterone alters the open probability of amiloride-blockable sodium channels in A6 epithelia. American Journal of Physiology-Cell Physiology 263, C825–C837. 10.1152/ajpcell.1992.263.4.C825.
121.
Kerem, E., Bistritzer, T., Hanukoglu, A., Hofmann, T., Zhou, Z., Bennett, W., MacLaughlin, E., Barker, P., Nash, M., Quittell, L., et al. (1999). Pulmonary Epithelial Sodium-Channel Dysfunction and Excess Airway Liquid in Pseudohypoaldosteronism. N Engl J Med 341, 156–162. 10.1056/NEJM199907153410304.
122.
Kim, C.S., Ahmad, S., Wu, T., Walton, W.G., Redinbo, M.R., and Tarran, R. (2018). SPLUNC1 is an allosteric modulator of the epithelial sodium channel. The FASEB Journal 32, 2478–2491. 10.1096/fj.201701126R.
123.
Kim, H.C., and Huibregtse, J.M. (2009). Polyubiquitination by HECT E3s and the Determinants of Chain Type Specificity. Molecular and Cellular Biology 29, 3307–3318. 10.1128/MCB.00240-09.
124.
Kleyman, T.R., and Cragoe, E.J. (1988). Amiloride and its analogs as tools in the study of ion transport. The Journal of Membrane Biology 105, 1–21. 10.1007/BF01871102.
125.
Kleyman, T.R., and Eaton, D.C. (2020). Regulating ENaC’s gate. American Journal of Physiology-Cell Physiology 318, C150–C162. 10.1152/ajpcell.00418.2019.
126.
Knoepp, F., Ashley, Z., Barth, D., Baldin, J.-P., Jennings, M., Kazantseva, M., Saw, E.L., Katare, R., Alvarez de la Rosa, D., Weissmann, N., et al. (2020). Shear force sensing of epithelial Na+ channel (ENaC) relies on N-glycosylated asparagines in the palm and knuckle domains of αENaC. Proceedings of the National Academy of Sciences 117, 717–726. 10.1073/pnas.1911243117.
127.
Knowles, M.R., Stutts, M.J., Spock, A., Fischer, N., Gatzy, J.T., and Boucher, R.C. (1983). Abnormal Ion Permeation Through Cystic Fibrosis Respiratory Epithelium. Science 221, 1067–1070. 10.1126/science.6308769.
128.
Komander, D., and Rape, M. (2012). The Ubiquitin Code. Annu. Rev. Biochem. 81, 203–229. 10.1146/annurev-biochem-060310-170328.
129.
Kougias, P., Weakley, S.M., Yao, Q., Lin, P.H., and Chen, C. (2010). Arterial baroreceptors in the management of systemic hypertension. Med Sci Monit 16, RA1–8.
130.
Kretz, O., Barbry, P., Bock, R., and Lindemann, B. (1999). Differential Expression of RNA and Protein of the Three Pore-forming Subunits of the Amiloride-sensitive Epithelial Sodium Channel in Taste Buds of the Rat. J Histochem Cytochem. 47, 51–64. 10.1177/002215549904700106.
131.
Kunzelmann, K., Bachhuber, T., Regeer, R., Markovich, D., Sun, J., and Schreiber, R. (2005). Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. The FASEB Journal 19, 142–143. 10.1096/fj.04-2314fje.
132.
Li, J., Sheng, S., Perry, C.J., and Kleyman, T.R. (2003). Asymmetric Organization of the Pore Region of the Epithelial Sodium Channel *. Journal of Biological Chemistry 278, 13867–13874. 10.1074/jbc.M300149200.
133.
Liang, X., Butterworth, M.B., Peters, K.W., Walker, W.H., and Frizzell, R.A. (2008). An Obligatory Heterodimer of 14-3-3β and 14-3-3ϵ Is Required for Aldosterone Regulation of the Epithelial Sodium Channel *. Journal of Biological Chemistry 283, 27418–27425. 10.1074/jbc.M803687200.
134.
Liddle, G.W., Bledsoe, T., and Coppage, W.S. (1963). A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans. Assoc. Am. Physicians 76, 199–213.
135.
Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A.J., et al. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallographica Section D 75, 861–877.
136.
Lingueglia, E., Champigny, G., Lazdunski, M., and Barbry, P. (1995). Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378, 730–733. 10.1038/378730a0.
137.
Liu, K., Qin, F., Sun, X., Zhang, Y., Wang, J., Wu, Y., Ma, W., Wang, W., Wu, X., Qin, Y., et al. (2018). Analysis of the genes involved in Mendelian forms of low-renin hypertension in Chinese early-onset hypertensive patients. Journal of Hypertension 36.
138.
Loffing, J., Pietri, L., Aregger, F., Bloch-Faure, M., Ziegler, U., Meneton, P., Rossier, B.C., and Kaissling, B. (2000). Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets. American Journal of Physiology-Renal Physiology 279, F252–F258. 10.1152/ajprenal.2000.279.2.F252.
139.
Loffing, J., Zecevic, M., Féraille, E., Kaissling, B., Asher, C., Rossier, B.C., Firestone, G.L., Pearce, D., and Verrey, F. (2001). Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: Possible role of SGK. American Journal of Physiology-Renal Physiology 280, F675–F682. 10.1152/ajprenal.2001.280.4.F675.
140.
Lossow, K., Hermans-Borgmeyer, I., Meyerhof, W., and Behrens, M. (2020). Segregated Expression of ENaC Subunits in Taste Cells. Chemical Senses 45, 235–248. 10.1093/chemse/bjaa004.
141.
Lu, C., Pribanic, S., Debonneville, A., Jiang, C., and Rotin, D. (2007). The PY Motif of ENaC, Mutated in Liddle Syndrome, Regulates Channel Internalization, Sorting and Mobilization from Subapical Pool. Traffic 8, 1246–1264. 10.1111/j.1600-0854.2007.00602.x.
142.
Ma, H.-P., Saxena, S., and Warnock, D.G. (2002). Anionic Phospholipids Regulate Native and Expressed Epithelial Sodium Channel (ENaC) *. Journal of Biological Chemistry 277, 7641–7644. 10.1074/jbc.C100737200.
143.
Maarouf, A.B., Sheng, N., Chen, J., Winarski, K.L., Okumura, S., Carattino, M.D., Boyd, C.R., Kleyman, T.R., and Sheng, S. (2009). Novel Determinants of Epithelial Sodium Channel Gating within Extracellular Thumb Domains *. Journal of Biological Chemistry 284, 7756–7765. 10.1074/jbc.M807060200.
144.
Mähler, J., and Persson, I. (2012). A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution. Inorg. Chem. 51, 425–438. 10.1021/ic2018693.
145.
Malik, B., Schlanger, L., Al-Khalili, O., Bao, H.-F., Yue, G., Price, S.R., Mitch, W.E., and Eaton, D.C. (2001). ENaC Degradation in A6 Cells by the Ubiquitin-Proteosome Proteolytic Pathway *. Journal of Biological Chemistry 276, 12903–12910. 10.1074/jbc.M010626200.
146.
Mall, M., Grubb, B.R., Harkema, J.R., O’Neal, W.K., and Boucher, R.C. (2004). Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nature Medicine 10, 487–493. 10.1038/nm1028.
147.
Mall, M.A., Button, B., Johannesson, B., Zhou, Z., Livraghi, A., Caldwell, R.A., Schubert, S.C., Schultz, C., O’Neal, W.K., Pradervand, S., et al. (2010). Airway Surface Liquid Volume Regulation Determines Different Airway Phenotypes in Liddle Compared with βENaC-overexpressing Mice *. Journal of Biological Chemistry 285, 26945–26955. 10.1074/jbc.M110.151803.
148.
Markadieu, N., Blero, D., Boom, A., Erneux, C., and Beauwens, R. (2004). Phosphatidylinositol 3,4,5-trisphosphate: An early mediator of insulin-stimulated sodium transport in A6 cells. American Journal of Physiology-Renal Physiology 287, F319–F328. 10.1152/ajprenal.00314.2003.
149.
Masilamani, S., Kim, G.-H., Mitchell, C., Wade, J.B., and Knepper, M.A. (1999). Aldosterone-mediated regulation of ENaC α, β, and γ subunit proteins in rat kidney. J Clin Invest 104, R19–R23. 10.1172/JCI7840.
150.
Maspero, E., Mari, S., Valentini, E., Musacchio, A., Fish, A., Pasqualato, S., and Polo, S. (03/11 07/23/received 01/04/revised 01/13/accepted 2011). Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Reports 12, 342–349. 10.1038/embor.2011.21.
151.
Mastronarde, D.N. (2003). SerialEM: A Program for Automated Tilt Series Acquisition on Tecnai Microscopes Using Prediction of Specimen Position. Microscopy and Microanalysis 9, 1182–1183. 10.1017/S1431927603445911.
152.
May, A., Puoti, A., Gaeggeler, H.P., Horisberger, J.D., and Rossier, B.C. (1997). Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel alpha subunit in A6 renal cells. Journal of the American Society of Nephrology 8.
153.
Mick, V.E., Itani, O.A., Loftus, R.W., Husted, R.F., Schmidt, T.J., and Thomas, C.P. (2001). The α-Subunit of the Epithelial Sodium Channel Is an Aldosterone-Induced Transcript in Mammalian Collecting Ducts, and This Transcriptional Response Is Mediated via Distinct cis-Elements in the 5’-Flanking Region of the Gene. Molecular Endocrinology 15, 575–588. 10.1210/mend.15.4.0620.
154.
Minegishi, S., Ishigami, T., Kino, T., Chen, L., Nakashima-Sasaki, R., Araki, N., Yatsu, K., Fujita, M., and Umemura, S. (2016). An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice. Sci. Rep. 6, 27137. 10.1038/srep27137.
155.
Montgomery, D.S., Yu, L., Ghazi, Z.M., Thai, T.L., Al-Khalili, O., Ma, H.-P., Eaton, D.C., and Alli, A.A. (2017). ENaC activity is regulated by calpain-2 proteolysis of MARCKS proteins. American Journal of Physiology-Cell Physiology 313, C42–C53. 10.1152/ajpcell.00244.2016.
156.
Mueller, G.M., Maarouf, A.B., Kinlough, C.L., Sheng, N., Kashlan, O.B., Okumura, S., Luthy, S., Kleyman, T.R., and Hughey, R.P. (2010). Cys Palmitoylation of the Beta Subunit Modulates Gating of the Epithelial Sodium Channel. J. Biol. Chem. 285, 30453–30462. 10.1074/jbc.M110.151845.
157.
Mueller, G.M., Yan, W., Copelovitch, L., Jarman, S., Wang, Z., Kinlough, C.L., Tolino, M.A., Hughey, R.P., Kleyman, T.R., and Rubenstein, R.C. (2012). Multiple residues in the distal C terminus of the α-subunit have roles in modulating human epithelial sodium channel activity. American Journal of Physiology-Renal Physiology 303, F220–F228. 10.1152/ajprenal.00493.2011.
158.
Mukherjee, A., Mueller, G.M., Kinlough, C.L., Sheng, N., Wang, Z., Mustafa, S.A., Kashlan, O.B., Kleyman, T.R., and Hughey, R.P. (2014/05/16/). Cysteine Palmitoylation of the γ Subunit Has a Dominant Role in Modulating Activity of the Epithelial Sodium Channel*. J. Biol. Chem. 289, 14351–14359. 10.1074/jbc.M113.526020.
159.
Muslin, A.J., Tanner, J.W., Allen, P.M., and Shaw, A.S. (1996). Interaction of 14-3-3 with Signaling Proteins Is Mediated by the Recognition of Phosphoserine. Cell 84, 889–897. 10.1016/S0092-8674(00)81067-3.
160.
Náray-Fejes-Tóth, A., Canessa, C., Cleaveland, E.S., Aldrich, G., and Fejes-Tóth, G. (1999). Sgk Is an Aldosterone-induced Kinase in the Renal Collecting Duct: EFFECTS ON EPITHELIAL Na+ CHANNELS *. Journal of Biological Chemistry 274, 16973–16978. 10.1074/jbc.274.24.16973.
161.
Naray-Fejes-Toth, A., and Fejes-Toth, G. (2000). The sgk, an aldosterone-induced gene in mineralocorticoid target cells, regulates the epithelial sodium channel. Kidney International 57, 1290–1294. 10.1046/j.1523-1755.2000.00964.x.
162.
Noreng, S., Bharadwaj, A., Posert, R., Yoshioka, C., and Baconguis, I. (2018). Structure of the human epithelial sodium channel by cryo-electron microscopy. eLife 7, e39340. 10.7554/eLife.39340.
163.
Noreng, S., Posert, R., Bharadwaj, A., Houser, A., and Baconguis, I. (2020). Molecular principles of assembly, activation, and inhibition in epithelial sodium channel. eLife 9, e59038. 10.7554/eLife.59038.
164.
Orce, G.G., Castillo, G.A., and Margolius, H.S. (1980). Inhibition of short-circuit current in toad urinary bladder by inhibitors of glandular kallikrein. American Journal of Physiology-Renal Physiology 239, F459–F465. 10.1152/ajprenal.1980.239.5.F459.
165.
Palmer, L.G. (1984). Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. The Journal of Membrane Biology 80, 153–165. 10.1007/BF01868771.
166.
Palmer, L.G. (1985). Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder. The Journal of Membrane Biology 87, 191–199. 10.1007/BF01871218.
167.
Palmer, L.G., and Frindt, G. (1986). Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proceedings of the National Academy of Sciences 83, 2767–2770. 10.1073/pnas.83.8.2767.
168.
Palmer, L.G., and Frindt, G. (1987). Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. American Journal of Physiology-Renal Physiology 253, F333–F339. 10.1152/ajprenal.1987.253.2.F333.
169.
Palmer, L.G., and Frindt, G. (1996). Gating of Na channels in the rat cortical collecting tubule: Effects of voltage and membrane stretch. Journal of General Physiology 107, 35–45. 10.1085/jgp.107.1.35.
170.
Palmer, L.G. (1982). Ion selectivity of the apical membrane Na channel in the toad urinary bladder. The Journal of Membrane Biology 67, 91–98. 10.1007/BF01868651.
171.
Passero, C.J., Mueller, G.M., Rondon-Berrios, H., Tofovic, S.P., Hughey, R.P., and Kleyman, T.R. (2008). Plasmin Activates Epithelial Na+ Channels by Cleaving the γ Subunit *. Journal of Biological Chemistry 283, 36586–36591. 10.1074/jbc.M805676200.
172.
Passero, C.J., Carattino, M.D., Kashlan, O.B., Myerburg, M.M., Hughey, R.P., and Kleyman, T.R. (2010). Defining an inhibitory domain in the gamma subunit of the epithelial sodium channel. American Journal of Physiology-Renal Physiology 299, F854–F861. 10.1152/ajprenal.00316.2010.
173.
Passero, C.J., Mueller, G.M., Myerburg, M.M., Carattino, M.D., Hughey, R.P., and Kleyman, T.R. (2012). TMPRSS4-dependent activation of the epithelial sodium channel requires cleavage of the γ-subunit distal to the furin cleavage site. American Journal of Physiology-Renal Physiology 302, F1–F8. 10.1152/ajprenal.00330.2011.
174.
Patel, A.B., Chao, J., and Palmer, L.G. (2012). Tissue kallikrein activation of the epithelial Na channel. American Journal of Physiology-Renal Physiology 303, F540–F550. 10.1152/ajprenal.00133.2012.
175.
Păunescu, T.G., Blazer-Yost, B.L., Vlahos, C.J., and Helman, S.I. (2000). LY-294002-inhibitable PI 3-kinase and regulation of baseline rates of Na+ transport in A6 epithelia. American Journal of Physiology-Cell Physiology 279, C236–C247. 10.1152/ajpcell.2000.279.1.C236.
176.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30, 70–82. 10.1002/pro.3943.
177.
Pintilie, G., Zhang, K., Su, Z., Li, S., Schmid, M.F., and Chiu, W. (2020). Measurement of atom resolvability in cryo-EM maps with Q-scores. Nature Methods 17, 328–334. 10.1038/s41592-020-0731-1.
178.
Plant, P.J., Lafont, F., Lecat, S., Verkade, P., Simons, K., and Rotin, D. (2000). Apical Membrane Targeting of Nedd4 Is Mediated by an Association of Its C2 Domain with Annexin Xiiib. The Journal of Cell Biology 149, 1473. 10.1083/jcb.149.7.1473.
179.
Plant, P.J., Yeger, H., Staub, O., Howard, P., and Rotin, D. (1997). The C2 Domain of the Ubiquitin Protein Ligase Nedd4 Mediates Ca2+-dependent Plasma Membrane Localization. J. Biol. Chem. 272, 32329–32336. 10.1074/jbc.272.51.32329.
180.
Pochynyuk, O., Staruschenko, A., Tong, Q., Medina, J., and Stockand, J.D. (2005). Identification of a Functional Phosphatidylinositol 3,4,5-Trisphosphate Binding Site in the Epithelial Na+ Channel *. Journal of Biological Chemistry 280, 37565–37571. 10.1074/jbc.M509071200.
181.
Pochynyuk, O., Tong, Q., Staruschenko, A., Ma, H.-P., and Stockand, J.D. (2006). Regulation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. American Journal of Physiology-Renal Physiology 290, F949–F957. 10.1152/ajprenal.00386.2005.
182.
Pochynyuk, O., Tong, Q., Staruschenko, A., and Stockand, J.D. (2007). Binding and direct activation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. The Journal of Physiology 580, 365–372. 10.1113/jphysiol.2006.127449.
183.
Pohl, P., Joshi, R., Petrvalska, O., Obsil, T., and Obsilova, V. (2021). 14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Communications Biology 4, 899. 10.1038/s42003-021-02419-0.
184.
Posert, R., and Baconguis, I. (2023). Appia: Simpler chromatography analysis and visualization. PLOS ONE 18, e0280255. 10.1371/journal.pone.0280255.
185.
PRADERVAND, S., WANG, Q., BURNIER, M., BEERMANN, F., HORISBERGER, J.D., HUMMLER, E., and ROSSIER, B.C. (1999). A Mouse Model for Liddle’s Syndrome. Journal of the American Society of Nephrology 10.
186.
Quick, M., and Javitch, J.A. (2007). Monitoring the function of membrane transport proteins in detergent-solubilized form. Proceedings of the National Academy of Sciences 104, 3603–3608. 10.1073/pnas.0609573104.
187.
Quinton, P.M. (1983). Chloride impermeability in cystic fibrosis. Nature 301, 421–422. 10.1038/301421a0.
188.
Randell, S.H., and Boucher, R.C. (2006). Effective Mucus Clearance Is Essential for Respiratory Health. Am J Respir Cell Mol Biol 35, 20–28. 10.1165/rcmb.2006-0082SF.
189.
Reeves, P.J., Callewaert, N., Contreras, R., and Khorana, H.G. (2002). Structure and function in rhodopsin: High-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proceedings of the National Academy of Sciences 99, 13419–13424. 10.1073/pnas.212519299.
190.
Renard, S., Voilley, N., Bassilana, F., Lazdunski, M., and Barbry, P. (1995). Localization and regulation by steroids of the α, β and γ subunits of the amiloride-sensitive Na+ channel in colon, lung and kidney. Pflügers Archiv 430, 299–307. 10.1007/BF00373903.
191.
Riordan, J.R., Rommens, J.M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., et al. (1989). Identification of the Cystic Fibrosis Gene: Cloning and Characterization of Complementary DNA. Science 245, 1066–1073. 10.1126/science.2475911.
192.
Rizo, J., and Südhof, T.C. (1998). C2-domains, Structure and Function of a Universal Ca2+-binding Domain. Journal of Biological Chemistry 273, 15879–15882. 10.1074/jbc.273.26.15879.
193.
Jennifer K. Roebber, Stephen D. Roper, and Nirupa Chaudhari (2019). The Role of the Anion in Salt (NaCl) Detection by Mouse Taste Buds. J. Neurosci. 39, 6224. 10.1523/JNEUROSCI.2367-18.2019.
194.
Ruffieux-Daidié, D., Poirot, O., Boulkroun, S., Verrey, F., Kellenberger, S., and Staub, O. (2008). Deubiquitylation Regulates Activation and Proteolytic Cleavage of ENaC. J. Am. Soc. Nephrol. 19, 2170. 10.1681/ASN.2007101130.
195.
Salih, M., Gautschi, I., van Bemmelen, M.X., Di Benedetto, M., Brooks, A.S., Lugtenberg, D., Schild, L., and Hoorn, E.J. (2017). A Missense Mutation in the Extracellular Domain of αENaC Causes Liddle Syndrome. J. Am. Soc. Nephrol. 28, 3291–3299. 10.1681/ASN.2016111163.
196.
Sandle, G.I., Higgs, N., Crowe, P., Marsh, M.N., Venkatesan, S., and Peters, T.J. (1990). Cellular basis for defective electrolyte transport in inflamed human colon. Gastroenterology 99, 97–105. 10.1016/0016-5085(90)91235-X.
197.
Satlin, L.M., Sheng, S., Woda, C.B., and Kleyman, T.R. (2001). Epithelial Na+ channels are regulated by flow. American Journal of Physiology-Renal Physiology 280, F1010–F1018. 10.1152/ajprenal.2001.280.6.F1010.
198.
Schaedel, C., Marthinsen, L., Kristoffersson, A.-C., Kornfält, R., Nilsson, K.O., Orlenius, B., and Holmberg, L. (1999). Lung symptoms in pseudohypoaldosteronism type 1 are associated with deficiency of the α-subunit of the epithelial sodium channel. The Journal of Pediatrics 135, 739–745. 10.1016/S0022-3476(99)70094-6.
199.
Schild, L., Canessa, C.M., Shimkets, R.A., Gautschi, I., Lifton, R.P., and Rossier, B.C. (1995). A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proceedings of the National Academy of Sciences 92, 5699–5703. 10.1073/pnas.92.12.5699.
200.
Schild, L., Lu, Y., Gautschi, I., Schneeberger, E., Lifton, R.P., and Rossier, B.C. (1996). Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. The EMBO Journal 15, 2381–2387. 10.1002/j.1460-2075.1996.tb00594.x.
201.
Schild, L., Schneeberger, E., Gautschi, I., and Firsov, D. (1997). Identification of Amino Acid Residues in the α, β, and γ Subunits of the Epithelial Sodium Channel (ENaC) Involved in Amiloride Block and Ion Permeation. Journal of General Physiology 109, 15–26. 10.1085/jgp.109.1.15.
202.
Shaw, A.S. (2006). Lipid rafts: Now you see them, now you don’t. Nature Immunology 7, 1139–1142. 10.1038/ni1405.
203.
Sheng, S., Carattino, M.D., Bruns, J.B., Hughey, R.P., and Kleyman, T.R. (2006). Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition. American Journal of Physiology-Renal Physiology 290, F1488–F1496. 10.1152/ajprenal.00439.2005.
204.
Sheng, S., Li, J., McNulty, K.A., Avery, D., and Kleyman, T.R. (2000). Characterization of the Selectivity Filter of the Epithelial Sodium Channel *. Journal of Biological Chemistry 275, 8572–8581. 10.1074/jbc.275.12.8572.
205.
Sheng, S., Bruns, J.B., and Kleyman, T.R. (2004). Extracellular Histidine Residues Crucial for Na+ Self-inhibition of Epithelial Na+ Channels *. Journal of Biological Chemistry 279, 9743–9749. 10.1074/jbc.M311952200.
206.
Sheridan, M.B., Fong, P., Groman, J.D., Conrad, C., Flume, P., Diaz, R., Harris, C., Knowles, M., and Cutting, G.R. (2005). Mutations in the beta-subunit of the epithelial Na+ channel in patients with a cystic fibrosis-like syndrome. Human Molecular Genetics 14, 3493–3498. 10.1093/hmg/ddi374.
207.
Shi, X., and Jarvis, D.L. (2007). Protein N-glycosylation in the baculovirus-insect cell system. Curr Drug Targets 8, 1116–1125. 10.2174/138945007782151360.
208.
Shi, S., Blobner, B.M., Kashlan, O.B., and Kleyman, T.R. (2012). Extracellular Finger Domain Modulates the Response of the Epithelial Sodium Channel to Shear Stress *. Journal of Biological Chemistry 287, 15439–15444. 10.1074/jbc.M112.346551.
209.
Shigemura, N., Ohkuri, T., Sadamitsu, C., Yasumatsu, K., Yoshida, R., Beauchamp, G.K., Bachmanov, A.A., and Ninomiya, Y. (2008). Amiloride-sensitive NaCl taste responses are associated with genetic variation of ENaC α-subunit in mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 294, R66–R75. 10.1152/ajpregu.00420.2007.
210.
Snyder, P.M., Olson, D.R., McDonald, F.J., and Bucher, D.B. (2001). Multiple WW Domains, but Not the C2 Domain, Are Required for Inhibition of the Epithelial Na+ Channel by Human Nedd4. J. Biol. Chem. 276, 28321–28326. 10.1074/jbc.M011487200.
211.
Snyder, P.M., Olson, D.R., and Bucher, D.B. (1999). A Pore Segment in DEG/ENaC Na+ Channels *. Journal of Biological Chemistry 274, 28484–28490. 10.1074/jbc.274.40.28484.
212.
Snyder, P.M., Bucher, D.B., and Olson, D.R. (2000). Gating Induces a Conformational Change in the Outer Vestibule of Enac. Journal of General Physiology 116, 781–790. 10.1085/jgp.116.6.781.
213.
Snyder, P.M., Olson, D.R., and Thomas, B.C. (2002). Serum and Glucocorticoid-regulated Kinase Modulates Nedd4-2-mediated Inhibition of the Epithelial Na+Channel *. Journal of Biological Chemistry 277, 5–8. 10.1074/jbc.C100623200.
214.
Snyder, P.M., Steines, J.C., and Olson, D.R. (2004). Relative Contribution of Nedd4 and Nedd4-2 to ENaC Regulation in Epithelia Determined by RNA Interference *. Journal of Biological Chemistry 279, 5042–5046. 10.1074/jbc.M312477200.
215.
Alan C. Spector, Nick A. Guagliardo, and Steven J. St. John (1996). Amiloride Disrupts NaCl versus KCl Discrimination Performance: Implications for Salt Taste Coding in Rats. J. Neurosci. 16, 8115. 10.1523/JNEUROSCI.16-24-08115.1996.
216.
Stähler, F., Riedel, K., Demgensky, S., Neumann, K., Dunkel, A., Täubert, A., Raab, B., Behrens, M., Raguse, J.-D., Hofmann, T., et al. (2008). A Role of the Epithelial Sodium Channel in Human Salt Taste Transduction? Chemosensory Perception 1, 78–90. 10.1007/s12078-008-9006-4.
217.
Staruschenko, A., Pochynyuk, O.M., Tong, Q., and Stockand, J.D. (2005). Ras couples phosphoinositide 3-OH kinase to the epithelial Na+ channel. Biochimica et Biophysica Acta (BBA) - Biomembranes 1669, 108–115. 10.1016/j.bbamem.2005.01.005.
218.
Staub, O., Gautschi, I., Ishikawa, T., Breitschopf, K., Ciechanover, A., Schild, L., and Rotin, D. (1997). Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. The EMBO Journal 16, 6325. 10.1093/emboj/16.21.6325.
219.
Stockand, J.D., Bao, H.-F., Schenck, J., Malik, B., Middleton, P., Schlanger, L.E., and Eaton, D.C. (2000). Differential Effects of Protein Kinase C on the Levels of Epithelial Na+ Channel Subunit Proteins *. Journal of Biological Chemistry 275, 25760–25765. 10.1074/jbc.M003615200.
220.
Stockand, J.D. (2002). New ideas about aldosterone signaling in epithelia. American Journal of Physiology-Renal Physiology 282, F559–F576. 10.1152/ajprenal.00320.2001.
221.
Sudji, I.R., Subburaj, Y., Frenkel, N., García-Sáez, A.J., and Wink, M. (2015). Membrane Disintegration Caused by the Steroid Saponin Digitonin Is Related to the Presence of Cholesterol. Molecules 20, 20146–20160. 10.3390/molecules201119682.
222.
Suzuki, K., Sato, K., Hisamoto, H., Siswanta, D., Hayashi, K., Kasahara, N., Watanabe, K., Yamamoto, N., and Sasakura, H. (1996). Design and Synthesis of Sodium Ion-Selective Ionophores Based on 16-Crown-5 Derivatives for an Ion-Selective Electrode. Anal. Chem. 68, 208–215. 10.1021/ac950773j.
223.
Svenningsen, P., Bistrup, C., Friis, U.G., Bertog, M., Haerteis, S., Krueger, B., Stubbe, J., Jensen, O.N., Thiesson, H.C., Uhrenholt, T.R., et al. (2009). Plasmin in Nephrotic Urine Activates the Epithelial Sodium Channel. Journal of the American Society of Nephrology 20.
224.
Tan, C.D., Hobbs, C., Sameni, M., Sloane, B.F., Stutts, M.J., and Tarran, R. (2014). Cathepsin B contributes to Na+ hyperabsorption in cystic fibrosis airway epithelial cultures. The Journal of Physiology 592, 5251–5268. 10.1113/jphysiol.2013.267286.
225.
Taverna, F., Xiong, Z., Brandes, L., Roder, J.C., Salter, M.W., and MacDonald, J.F. (2000). The Lurcher Mutation of an α-Amino-3-hydroxy-5-methyl- 4-isoxazolepropionic Acid Receptor Subunit Enhances Potency of Glutamate and Converts an Antagonist to an Agonist *. Journal of Biological Chemistry 275, 8475–8479. 10.1074/jbc.275.12.8475.
226.
Tetti, M., Monticone, S., Burrello, J., Matarazzo, P., Veglio, F., Pasini, B., Jeunemaitre, X., and Mulatero, P. (2018). Liddle Syndrome: Review of the Literature and Description of a New Case. International Journal of Molecular Sciences 19. 10.3390/ijms19030812.
227.
Thomas, S.V., Kathpalia, P.P., Rajagopal, M., Charlton, C., Zhang, J., Eaton, D.C., Helms, M.N., and Pao, A.C. (2011). Epithelial Sodium Channel Regulation by Cell Surface-associated Serum- and Glucocorticoid-regulated Kinase 1. J. Biol. Chem. 286, 32074–32085. 10.1074/jbc.M111.278283.
228.
Thomas, G. (2002). Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nature Reviews Molecular Cell Biology 3, 753–766. 10.1038/nrm934.
229.
Tong, Q., Booth, R.E., Worrell, R.T., and Stockand, J.D. (2004). Regulation of Na+ transport by aldosterone: Signaling convergence and cross talk between the PI3-K and MAPK1/2 cascades. American Journal of Physiology-Renal Physiology 286, F1232–F1238. 10.1152/ajprenal.00345.2003.
230.
Tong, Q., Gamper, N., Medina, J.L., Shapiro, M.S., and Stockand, J.D. (2004). Direct Activation of the Epithelial Na+ Channel by Phosphatidylinositol 3,4,5-Trisphosphate and Phosphatidylinositol 3,4-Bisphosphate Produced by Phosphoinositide 3-OH Kinase *. Journal of Biological Chemistry 279, 22654–22663. 10.1074/jbc.M401004200.
231.
Umemura, M., Ishigami, T., Tamura, K., Sakai, M., Miyagi, Y., Nagahama, K., Aoki, I., Uchino, K., Rohrwasser, A., Lalouel, J.-M., et al. (2006). Transcriptional diversity and expression of NEDD4L gene in distal nephron. Biochemical and Biophysical Research Communications 339, 1129–1137. 10.1016/j.bbrc.2005.11.120.
232.
Valeria Kalienkova, Mowgli Dandamudi, Cristina Paulino, and Timothy Lynagh (2023). Structural basis for excitatory neuropeptide signaling. bioRxiv, 2023.04.29.538817. 10.1101/2023.04.29.538817.
233.
Vallet, V., Chraibi, A., Gaeggeler, H.-P., Horisberger, J.-D., and Rossier, B.C. (1997). An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389, 607–610. 10.1038/39329.
234.
Waldegger, S., Barth, P., Raber, G., and Lang, F. (1997). Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proceedings of the National Academy of Sciences 94, 4440–4445. 10.1073/pnas.94.9.4440.
235.
Wang, J., Gambhir, A., Hangyás-Mihályneá, G., Murray, D., Golebiewska, U., and McLaughlin, S. (2002). Lateral Sequestration of Phosphatidylinositol 4,5-Bisphosphate by the Basic Effector Domain of Myristoylated Alanine-rich C Kinase Substrate Is Due to Nonspecific Electrostatic Interactions *. Journal of Biological Chemistry 277, 34401–34412. 10.1074/jbc.M203954200.
236.
Wang, L.-P., Yang, K.-Q., Jiang, X.-J., Wu, H.-Y., Zhang, H.-M., Zou, Y.-B., Song, L., Bian, J., Hui, R.-T., Liu, Y.-X., et al. (2015). Prevalence of Liddle Syndrome Among Young Hypertension Patients of Undetermined Cause in a Chinese Population. The Journal of Clinical Hypertension 17, 902–907. 10.1111/jch.12598.
237.
Weir, M.R., and Dzau, V.J. (1999). The renin-angiotensin-aldosterone system: A specific target for hypertension management. American Journal of Hypertension 12, 205S–213S. 10.1016/S0895-7061(99)00103-X.
238.
Weisz, O.A., Wang, J.-M., Edinger, R.S., and Johnson, J.P. (2000). Non-coordinate Regulation of Endogenous Epithelial Sodium Channel (ENaC) Subunit Expression at the Apical Membrane of A6 Cells in Response to Various Transporting Conditions *. Journal of Biological Chemistry 275, 39886–39893. 10.1074/jbc.M003822200.
239.
Whorton, M.R., and MacKinnon, R. (2013). X-ray structure of the mammalian GIRK2–βγ G-protein complex. Nature 498, 190–197. 10.1038/nature12241.
240.
Wichmann, L., and Althaus, M. (2020). Evolution of epithelial sodium channels: Current concepts and hypotheses. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 319, R387–R400. 10.1152/ajpregu.00144.2020.
241.
Wiemuth, D., Ke, Y., Rohlfs, M., and McDonald, F.J. (2007). Epithelial sodium channel (ENaC) is multi-ubiquitinated at the cell surface. Biochem. J. 405, 147–155. 10.1042/BJ20060747.
242.
Wiesner, S., Ogunjimi, A.A., Wang, H.-R., Rotin, D., Sicheri, F., Wrana, J.L., and Forman-Kay, J.D. (2007/08/24/). Autoinhibition of the HECT-Type Ubiquitin Ligase Smurf2 through Its C2 Domain. Cell 130, 651–662. 10.1016/j.cell.2007.06.050.
243.
Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V., Keedy, D.A., Hintze, B.J., Chen, V.B., et al. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science 27, 293–315. 10.1002/pro.3330.
244.
Wulff, P., Vallon, V., Huang, D.Y., Völkl, H., Yu, F., Richter, K., Jansen, M., Schlünz, M., Klingel, K., Loffing, J., et al. (11/01/ 2002). Impaired renal Na+ retention in the Sgk1-knockout mouse. The Journal of Clinical Investigation 110, 1263–1268. 10.1172/JCI15696.
245.
Yang, K.-Q., Xiao, Y., Tian, T., Gao, L.-G., and Zhou, X.-L. (2014). Molecular genetics of Liddle’s syndrome. Clinica Chimica Acta 436, 202–206. 10.1016/j.cca.2014.05.015.
246.
Yarmolinsky, D.A., Zuker, C.S., and Ryba, N.J.P. (2009). Common Sense about Taste: From Mammals to Insects. Cell 139, 234–244. 10.1016/j.cell.2009.10.001.
247.
Yoder, N., and Gouaux, E. (2020). The His-Gly motif of acid-sensing ion channels resides in a reentrant “loop” implicated in gating and ion selectivity. eLife 9, e56527. 10.7554/eLife.56527.
248.
Yoder, N., Yoshioka, C., and Gouaux, E. (2018). Gating mechanisms of acid-sensing ion channels. Nature 555, 397–401. 10.1038/nature25782.
249.
Yu, J.X., Chao, L., and Chao, J. (1994). Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. Journal of Biological Chemistry 269, 18843–18848. 10.1016/S0021-9258(17)32244-5.
250.
Zabner, J., Smith, J.J., Karp, P.H., Widdicombe, J.H., and Welsh, M.J. (1998). Loss of CFTR Chloride Channels Alters Salt Absorption by Cystic Fibrosis Airway Epithelia In Vitro. Molecular Cell 2, 397–403. 10.1016/S1097-2765(00)80284-1.
251.
Zachar, R.M., Skjødt, K., Marcussen, N., Walter, S., Toft, A., Nielsen, M.R., Jensen, B.L., and Svenningsen, P. (2015). The Epithelial Sodium Channel γ-Subunit Is Processed Proteolytically in Human Kidney. Journal of the American Society of Nephrology 26.
252.
Zachar, R., Mikkelsen, M.K., Skjødt, K., Marcussen, N., Zamani, R., Jensen, B.L., and Svenningsen, P. (2019). The epithelial Na+ channel α-and γ-subunits are cleaved at predicted furin-cleavage sites, glycosylated andmembrane associated in human kidney. Pflügers Archiv - European Journal of Physiology 471, 1383–1396. 10.1007/s00424-019-02321-z.
253.
Zeissig, S., Bergann, T., Fromm, A., Bojarski, C., Heller, F., Guenther, U., Zeitz, M., Fromm, M., and Schulzke, J. (2008). Altered ENaC Expression Leads to Impaired Sodium Absorption in the Noninflamed Intestine in Crohn’s Disease. Gastroenterology 134, 1436–1447. 10.1053/j.gastro.2008.02.030.
254.
Zhai, Y.-J., Wu, M.-M., Linck, V.A., Zou, L., Yue, Q., Wei, S.-P., Song, C., Zhang, S., Williams, C.R., Song, B.-L., et al. (2019/07/01/). Intracellular cholesterol stimulates ENaC by interacting with phosphatidylinositol‑4,5‑bisphosphate and mediates cyclosporine A-induced hypertension. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1865, 1915–1924. 10.1016/j.bbadis.2018.08.027.
255.
Zhang, L., Wang, X., Chen, J., Kleyman, T.R., and Sheng, S. (2022). Accessibility of ENaC extracellular domain central core residues. Journal of Biological Chemistry 298. 10.1016/j.jbc.2022.101860.
256.
Zhang, L., Wang, X., Chen, J., Sheng, S., and Kleyman, T.R. (2023). Extracellular intersubunit interactions modulate epithelial Na+ channel gating. Journal of Biological Chemistry 299, 102914. 10.1016/j.jbc.2023.102914.
257.
Zhao, G.Q., Zhang, Y., Hoon, M.A., Chandrashekar, J., Erlenbach, I., Ryba, N.J.P., and Zuker, C.S. (2003). The Receptors for Mammalian Sweet and Umami Taste. Cell 115, 255–266. 10.1016/S0092-8674(03)00844-4.
258.
Zhou, R., and Snyder, P.M. (2005). Nedd4-2 Phosphorylation Induces Serum and Glucocorticoid-regulated Kinase (SGK) Ubiquitination and Degradation. J. Biol. Chem. 280, 4518–4523. 10.1074/jbc.M411053200.